A SYSTEMATIC COMPONENT-BASED DEVELOPMENT PROCESS MODEL
USING INTEGRATED MARMOT AND PECOS METHODS

SUZILA BINTI SABIL

A thesis submitted in fulfilment of the
requirements for the award of
the degree of Master of Science (Computer Science)

Faculty of Computer Science and Information Systems
Universiti teknologi Malaysia

OCTOBER 2010
I declare that this thesis entitled “A Systematic Component-Based Development Process Model using Integrated MARMOT and PECOS Methods” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : SUZILA BINTI SABIL
Date : 14th October 2010
.... To my beloved mother and father....
ACKNOWLEDGEMENTS

First of all, I wish ALHAMDULILLAH to ALLAH for giving me a chance to going through the experience and finishing my research work.

I wish to express my sincere appreciation to my supervisor Dr. Dayang Norhayati Binti Abang Jawawi for the guidence, advice and encouragement during course of this work. Her support and suggestion gives me inspired to going through in this course work.

I would like to acknowledge the Ministry of Science Technology and Innovation (MOSTI) of Malaysia for their financial support.

I would like to thanks to all members of the Laboratory of Software Engineering for their continuous helps and supports.

Finally, my special thanks to my beloved parents Sangairah bte Jalani and Sabil bin Arif and also to whole of my family for their support, love and care.
ABSTRACT

Software functionality is not the only focus in Embedded Real Time (ERT) software development, but multi-constraint requirements such as timing are also important. Besides, ERT software development involves multidisciplinary knowledge that includes software, mechanical and electronic engineering fields. From this perspective, Component-Based Development (CBD) appears to be an appropriate approach in designing the ERT software development due to the ability of domain experts to interactively compose and adapt sophisticated ERT software, which decreases development time and improves software quality. The existing component technology, Pervasive Component System (PECOS) is used due to its strength of PECOS in supporting multi-constraint requirement of ERT software development. However, component technology is not adequate in supporting CBD methodology of the process model. Therefore, Component-Based Real-Time Object-Oriented Development and Testing (MARMOT) method is used to support multidisciplinary knowledge requirement. The aim of this research is to propose a systematic CBD process model for ERT software development in terms of multi-constraint and multi-disciplinary knowledge through the integrated MARMOT and PECOS metamodels. Prototype of Component-Oriented Programming (COP) tool has been developed to support CBD process model. The result of implementing the CBD process model in developing software for real Autonomous Mobile Robot (AMRs) shows that the systematic CBD process model can fulfil the multi-constraint and multi-disciplinary knowledge requirement of AMR. The integrated MARMOT and PECOS metamodel is a relevant match with the balance result of precision, recall and MP-Measure values as 0.4157, 0.3125 and 0.36 respectively. Meanwhile, the usability testing result of COP tool shows it could support modelling in COP phase and it is proven by the result of effectiveness (96%), efficiency (4.2 minute) and satisfaction (4.1 minute) values with reliability Cronbach α for overall questions as consistent (0.89). Thus, the main contribution of this research is to produce a systematic CBD process model for small to medium ERT software development.
ABSTRAK

Didalam pembangunan perisian Masa Nyata Terbenam (ERT), kefungsian perisian bukan satu-satunya fokus tetapi keperluan kefungsian pelbagai kekangan tambahan seperti masa juga adalah penting. Selain itu, pembangunan perisian ERT melibatkan pengetahuan pelbagai disiplin termasuk bidang kejuruteraan perisian, elektronik dan mekanikal. Dari perspektif ini, pembangunan berasaskan komponen (CBD) muncul sebagai salah satu daripada pendekatan yang sesuai untuk membangunkan perisian ERT disebabkan keupayaannya sebagai pakar domain didalam menjalin dan mengadaptasi secara interaktif perisian ERT canggih yang berupaya meggurangkan masa pembangunan dan meningkatkan kualiti perisian. Teknologi komponen PERvasive COmponent System (PECOS) digunakan dalam penyelidikan ini kerana kekuatannya dalam menyokong keperluan pelbagai kekangan didalam pembangunan perisian ERT. Walaubagaimanapun, teknologi komponen sahaja tidak mencukupi untuk menyokong kaedah model proses CBD. Lantaran itu, kaedah Component-Based Real-Time Object-Oriented Development and Testing (MARMOT) digunakan untuk menyokong keperluan pengetahuan pelbagai disiplin. Oleh itu, penyelidikan ini mencadangkan model proses CBD yang sistematik untuk membangunkan perisian ERT didalam skop masalah pelbagai kekangan dan disiplin pengetahuan melalui penyatuan metamodel MARMOT dan PECOS. Sebuah prototaip alat komponen berasaskan aturcara (COP) dibangunkan untuk menyokong model process CBD. Hasil perlaksanaan pembangunan perisian Autonomi Robot Mudah Alih (AMR) yang sebenar keatas model process CBD yang dicadangkan didapati mampu memenuhi keperluan pelbagai kekangan dan disiplin pengetahuan keatas AMR. Penyepaduan metamodel MARMOT dan PECOS adalah padanan yang sesuai dengan nilai ketepatan, panggilan semula dan pengukuran-MP masing-masing adalah 0.4157, 0.3125 dan 0.36. Sementara itu, keputusan ujian kebolehgunaan keatas prototaip alat COP menunjukkan ianya mampu menyokong permodelan didalam fasa COP da ia terbukti melalui hasil keberkesanan (96%), kecekapan (4.2) dan kepuasan (4.1). dengan kebolehpercayaan Cronbach α bagi keseluruhan soalan adalah konsisten (0.89). Oleh itu, sumbangan utama dalam penyelidikan ini ialah menghasilkan model process CBD yang sistematik bagi membangunkan perisian ERT yang bersaiz kecil dan sederhana.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Overview 1
1.2 Background of the Problem 4
1.3 Statement of the Problem 7
1.4 Objectives of the Study 8
1.5 Importance of Research 9
1.6 Scope of the Study 9
1.7 Thesis Organization 10
2 LITERATURE REVIEW

2.1 Introduction 11

2.2 Component-Based Software Engineering 12

2.2.1 Component Technology 13

2.3 Component Oriented Analysis and Design 15

2.4 Component Oriented Programming Infrastructures 17

2.5 CBSE for ERT System 20

2.6 Previous Evaluation of Component Technologies for ERT Systems 22

2.7 A Review on Current Component Technologies for ERT System 25

2.7.1 PEvasive COmponent System (PECOS) 27

2.7.2 KOALA 29

2.7.3 KobrA 31

2.7.4 COM 34

2.7.5 Conclusion of the Evaluation Component Infrastructure 35

2.8 Previous Evaluation of CBD Method 37

2.9 The Review on CBD Method for ERT Systems 38

2.9.1 An Evaluation of the Criteria for CBD Methods 41

2.9.2 The Evaluation Results 43

2.10 Summary 45

3 RESEARCH METHODOLOGY 49

3.1 Introduction 49

3.2 Research Design and Procedure 50

3.3 Research Process and Frameworks 51
3.4 Conceptual Framework 57
3.5 Case Studies 58
 3.5.1 Autonomous Mobile Robot Specification 59
 3.5.2 Intelligent Wheel Chair 64
3.6 Summary 67

4 INTEGRATION OF PECOS COMPONENT MODEL INTO MARMOT METAMODEL 68
4.1 Introduction 68
4.2 The Mapping Flow of MARMOT and PECOS Metamodel 69
4.3 The MARMOT Component Matamodel 71
4.4 PECOS Metamodel 77
4.5 Integration Result of MARMOT and PECOS Metamodel 79
4.6 Evaluation of Integrating Metamodel 83
 4.6.1 Result of Integration PECOS Metamodel into MARMOT metamodel 86
 4.6.2 Result of Integration PECOS Static Component Structure into KobrA Static Structure Component Implementation 89
4.7 Implementation of Autonomous Mobile Robot 95
 4.7.1 Implementation of MARMOT 96
 4.7.2 Implementation of the Integrated PECOS and MARMOT 99
 4.7.3 Implementation of PECOS 100
4.8 Summary 104
5 COMPONENT-BASED DEVELOPMENT PROCESS MODEL

5.1 Introduction 105

5.2 Mapping of the Component-Based Development Phases 106

5.3 A Component-Based Development Process Model for Embedded Real Time Software 108

5.3.1 Analysis Phase 113

5.3.2 Early Design and Detail Design Phase 115

5.3.3 Composition and Implementation Phase 116

5.4 Application of the Proposed Method 118

5.4.1 I-Wheelchair Mechanical and Electrical Parts 119

5.4.2 I-WheelChair Software Parts 120

5.4.2.1 Analysis Phase 120

5.4.2.1.1 Preliminary Information 121

5.4.2.1.2 Planning System Architecture 125

5.4.2.2 Early Design 127

5.4.2.3 Detail Design 131

5.4.2.4 Composition Phase 135

5.4.2.5 Implementation Phase 136

5.5 Comparison Results of CBD Process Model 137

5.6 Supportive Tools of a Systematic SBD Process Model 141

5.7 Summary 143
6 DEVELOPMENT OF THE COP TOOL PROTOTYPES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>6.2</td>
<td>Specification of COP Tool</td>
<td>146</td>
</tr>
<tr>
<td>6.3</td>
<td>COP Tool Requirement</td>
<td>150</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Module 1: Component Development</td>
<td>150</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Module 2: Component Integration</td>
<td>152</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Module 3: Generate Code Template</td>
<td>155</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Module 4: Manage File</td>
<td>155</td>
</tr>
<tr>
<td>6.4</td>
<td>Prototype of COP Tool</td>
<td>156</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>163</td>
</tr>
</tbody>
</table>

7 USABILITY TESTING OF COP TOOL

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>7.2</td>
<td>Development of Test Objectives</td>
<td>165</td>
</tr>
<tr>
<td>7.3</td>
<td>Prepare Test Materials</td>
<td>165</td>
</tr>
<tr>
<td>7.4</td>
<td>Acquire Representative Participants</td>
<td>167</td>
</tr>
<tr>
<td>7.5</td>
<td>Set up Testing Environment</td>
<td>170</td>
</tr>
<tr>
<td>7.6</td>
<td>Conduct the Test Session</td>
<td>170</td>
</tr>
<tr>
<td>7.7</td>
<td>Research Finding on COP tool</td>
<td>172</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Effectiveness</td>
<td>172</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Efficiency</td>
<td>173</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Satisfaction</td>
<td>174</td>
</tr>
<tr>
<td>7.8</td>
<td>Problem Encountered for Each Task</td>
<td>176</td>
</tr>
<tr>
<td>7.9</td>
<td>Reliability of Questionnaire</td>
<td>177</td>
</tr>
<tr>
<td>7.10</td>
<td>Conclusion of the Experimental Results</td>
<td>178</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary</td>
<td>178</td>
</tr>
</tbody>
</table>