COURSE OUTLINE

Course Code: SCJ 2013 / SCK 2013 Course Name: Data Structures and Algorithms Total Contact Hours: 42 hours Course Pre-requisite: None

SYNOPSIS

This course provides an introduction to data structure and algorithms, types of data structures and programming principles. Student will learn abstract data type concepts using class and apply ADT concept in the implementation of data structures. Recursive function, algorithm efficiency, order of magnitude analysis and Big O notation will be discussed. Students will implement operations that can be applied to data structures using various sorting and searching techniques. Further, students will be exposed to linear data structures such as linked lists, stack and queue. Non-linear data structures such as tree and graphs will also be discussed. At the end of the course, students should be able to implement and apply the theory and concepts of data structure in the mini project which is conducted in group.

LEARNING OUTCOMES

By the end of the course, students should be able to:

No.	Course Learning Outcome	Programme Learning Outcome(s) Addressed	Assessment Methods
1.	Describe all types of data structures and know how to apply them effectively in problem solving.	PO1 (C1, C2, A1, A2, CS2)	LE, Q, T, F
2.	Analyze and select the most suitable and effective algorithm for solving certain problem and case study.	PO2 (C4, A2, CTPS1)	LE, Q, A, T, PR, F
3.	Develop a medium to complex program as a group mini project by applying data structure concept and present the output in the class.	PO2, PO4,PO5 (C4, CTPS2, A1, A2).	PR, A, Pr, Peer
	(T – Test ; Q – Quiz; LE – Lab Exercise ; Sbt – Skill- Based Test ; A – Assignment; F – Final Exam)		

STUDENT LEARNING TIME

Teaching and Learning Activities			Student Learning Time (hours)	
	Lecturer Centered	Lecture	28	
	• Student Centered	- Practical/Lab/Tutorial	28	
Face to face Learning		 Student Centered Activity 	0	
	Others		0	
	Su	ıb Total		56

Self Learning	Non Face to face or Student Centered Learning (SCL)	10	
	Revision	14	
	Assessment Preparation	12	
	• Others	0	
	Sub Total		36
	Continuous Assessment	25	
Formal Assessment	Final Examination	3	
	Others	0	
	Sub Total		28
			120
	TOTAL SLT		12

TEACHING METHODOLOGY

E-learning, Lecture and Discussion, Lab Activities, Co-operative Learning, Mini Project, Presentation, Independent Study

WEEKLY SCHEDULE

Week	Торіс	Activities/hours
Week 1	 1.0 Introduction to Data Structure & Algorithm 1.1 Types of Data Structure 1.2 Algorithm 1.3 Programming Principle 	Lecture : 2 hours Lab Activity : 2 hours Assessment: Nil
Week 2	1.4 ADT and class 2.0 ADT and Class 3.0 C++ revision	Lecture : 2 hours Lab Activity : 2 hours Assessment: LE1
Week 3	 4.0 Recursive 5.0 Algorithm Efficiency 5.1 Analisa Order of magnitude 5.2 Big O notation 	Lecture : 2 hours Lab Activity : 2 hours Assessment: Quiz 1
Week 4-5	6.0 Sorting 6.1 Selection Sort 6.2 Insertion Sort 6.3 Bubble Sort 6.4 Advanced Sorting - Quick Sort 6.5 Merge Sort	Lecture : 4 hours Lab Activity : 2 hours Student Centred learning : 2 hours Assessment: Quiz 2 & LE2
Week 6	7.0 Searching 7.1 Sequential Search 7.2 Binary Search	Lecture : 2 hours Lab Activity : 1 hour Student Centred learning : 1 hour Assessment: Assignment 1
Week 7	8.0 Linked Lists 6.1 Pointer 6.2 Introduction To List 6.3 List Operations 6.4 Types of Link Lists	Lecture : 2 hours Lab Activity : 2 hours Assessment: Test 1

Week 8	6.5 Link List Operation	Lecture : 2 hours
WEEK O	6.6 Create Link List, Link List Declaration	
	6.7 Add node, Delete Node	Lab Activity : 2 hours Student Centred learning
	6.8 Find Node, Print Node	: 1 hour
	0.0 Find Node, Print Node	
		Assessment:
West 0		Assignment 2
Week 9	9.0 Stack	Lecture : 2 hours
	7.1 Introduction To Stack	Lab Activity : 2 hours
	7.2 Stack Operation – pop and push	Assessment: LE3
	7.3 Stack Implementation	
	7.4 stack application	
Week 10-11	8.0 Queue	Lecture : 4 hours
	8.1 introduction	Lab Activity: 4 hours
	8.2 Queue Implementation (Array and link list)	Student Centred learning
	8.3 Circular queue	: 2 hours
		Assessment: Project &
		Quiz 3
Week 12-13	9.0 Tree	Lecture : 4 hours
	9.1 Introduction, Terms realated to tree	Lab Activity: 4 hours
	9.2 Binary search tree	Assessment: LE4
	9.3 Tree Operation – create node, add node,	
	9.4 delete node, print node, search node	
	9.5 Tree Traversal	
Week 14	Project Presentation	Assessment:
		Project Submission and
		presentation
Week 15	STUDY WEEK	
Week 16	EXAMINATION WEEK	Assessment:
		Final Exam

REFERENCES

- 1. Nor Bahiah, Dayang Norhayati, Zalmiyah dan Aida. Teaching Modules: Data Structure & Algorithms using C++, Universiti Teknologi Malaysia, 2010.
- 2. Frank M Carano, Janet J Prichard, "Data Abstraction and Problem Solving with C++", Walls and Mirrors, Fifth Edition, (2007), Addison Wesley
- 3. Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures A Pseudocode Approach With C++", Brooks/Cole Thomson Learning, 2001.
- 4. Nor Bahiah Ahmad et al, "Struktur Data & Algoritma Mengunakan C++ ", UTM Press, 2005.

GRADING					
No.	Assessment	Number	% each	% total	
1	Assignments	2	5%	10	
2	Quizzes	2	5%	10	
3	Lab Exercises	4	2.5%	10	
4	Project	1	10%	10	
5	Test 1	1	20%	20	
6	Final Exam	1	40%	40	
	Overall Total			100	

GRADING