COURSE OUTLINE

Course Code: SCSJ4423 Course Name: Real-Time Software Engineering Total Contact Hours: 42 hours Course Pre-requisite: Software Engineering (SCSJ1203)

SYNOPSIS

This course equips the students with knowledge in embedded real-time systems and real-time software development particularly on how software engineering approaches assist real-time software development. The knowledge unit for this course area emphasize the following topics; real-time concepts, embedded real-time development methodologies, real-time operating systems, embedded real-time hardware fundamental and real-time analysis. The objective of this course is to introduce students with key software engineering practices in real-time software development and give practical experience to the students in developing embedded real-time software using appropriate software methods and tools.

LEARNING OUTCOMES

By the end of the course, students should be able to:

No.	Course Learning Outcome	Programme Learning	Assessment Methods
		Outcome(s)	hielious
		Addressed	
1.	Explain the issues and basic concepts of real-time and real-time software development.	PO1 (C2, P2, A2)	Q, A, T, F
	r i i i i i i i i i i i i i i i i i i i	PO3 (C3, P3, A2)	
2.	Apply appropriate software engineering methods and tools in developing embedded real-time software	PO3 (C4 A3 P2)	Pb, A, T, PR, F
	tools in developing embedded real-time software.	103 (04, A3, 12)	
3.	Analyze the timing performance of a real-time software design using real-time schedulabity analysis tools.	PO5 (CTPS1 – CTPS3)	Pb, Pr, F
		PO6 (TS1 – TS3)	
4.	Work in a team to apply real-time software engineering		Pb, PR, A, Pr,
	knowledge in developing a medium program as a group mini project.		Peer
	(T – Test ; Q – Quiz; Pb - Problem-Based; A – Assignment; Peer – Peer assessment; PR – Project ; Pr – Presentation, F – Final Exam)		

STUDENT LEARNING TIME

Т	Student Learning Time (hours)		
	Lecturer Centered Lecture	14	
	- Practical/Lab/Tutorial	4	
Face to face Learning	Student Centered Student Centered Activity	24	
	• Others	0	
	Sub Total	42	
Self Learning	Non Face to face or Student Centered Learning (SCL)	34	

	Revision	14		
	Assessment Preparation	17		
	• Others	0		
Sub Total			55	
	Continuous Assessment	10		
Formal Assessment	Final Examination	3		
i of mai hissessmene	• Others	0		
	Sub Total		13	
TOTAL SLT			120	

TEACHING METHODOLOGY

Lecture and Discussion, Problem-Based Learning, Mini Project, Presentation, Independent Study

WEEKLY SCHEDULE

Week	Topics	Activities/hours
Week 1	1.0 Introduction to Real-Time Systems	
	1.1 Categories of computer systems	Lecture : 1
	1.2 Embedded real-time systems	Student Centred
	1.3 Characteristics and challenges	Learning: 2
Week 2	2.0 Real-Time Software Overview	
	2.1 Challenges in software engineering of ERT software	Lecture : 1
	2.2 Software Life Cycle	Student Centred
	2.3 Software engineering essential for ERT	Learning: 2
		Assessment:
		Problem solving 1
Weeks 3 & 4	3.0 Requirement Specification and Design	
	3.1 Requirements stage	Lecture : 2
	3.2 Prototyping	Student Centred
	3.3 Design fundamentals	Learning: 4
	3.4 Elements of modular design	Assessment:
	3.5 Design Models – functional, OOD & data flow	Assignment 1
		Assessment:
		Problem solving 2
Weeks 5 & 6	4.0 Concurrency	
	4.1 What & why concurrency	Lecture : 3
	4.2 Concepts of concurrency	Student Centred
	4.3 Sequential and Concurrency programming	Learning: 6
	4.4 Real-time & other application areas	Assessment:
		Problem solving 3
Weeks 7	Test 1	Assessment: Test 1

Weeks 8	 5.0 Concurrent Programming 5.1 Construct 5.2 Concurrent C Language 5.3 BACI C 5.4 Simulator Environment (2) Beel Time Operative Sectors 	
	6.1 Basic features6.2 Scheduling concept	
Weeks 9	 6.0 Real-Time Operating Systems 6.3 Control of share resources 6.4 Inter-task communication 6.5 Memory management 6.6 MicroC/os RTOS 	Lecture : 2 Student Centred Learning : 4 Assessment: Problem solving 4
Week 10-11	 7.0 Real-Time Analysis 8.1 Schedulability analysis 8.2 Scheduling policies 8.3 Designing with rate-monotonic analysis 	Lecture : 2 Student Centred Learning : 4 Assessment: Problem solving 5
Weeks 12-13	 6.0 Hardware Fundamental for Software Engineering 6.1 Fundamental of microprocessor based systems 6.2 Input-output interfacing technique 6.3 Embedded real-time robotics case study 	Lecture : 1 Student Centred Learning : 2 Assessment: Mini Project
Week 14	Mini Project Presentation Revision	Student Centred Learning : 3
Week 15 Week 16	STUDY WEEK EXAMINATION WEEK	

REFERENCES :

- 1. Cooling J. (2003). "Software Engineeing for Real-Time Systems", Addison-Wesley.
- 2. Robert Oshana and Mark Kraeling (2013) Software Engineering for Embedded Systems Methods, Practical Techniques, and Applications, Newnes.
- **3.** Burns A., Wellings A. J. (2001), "Real-time Systems and Programming Languages", Second Edition, Addison Wesley, UK.
- 4. Ben-Ari M., (2006). Principles of Concurrent and Distributed Programming, Addison-Wesley, England:.
- 5. Douglass, Bruce Powel (2007), "Real time UML workshop for embedded systems", Newness, Burlington.
- 6. Hermann Kopetz, B. P. (2011). "Real-Time Systems". Second edition, London: Springer.

GRADING

No.	Assessment	Number	% each	% total
1	Assignments	1	10%	10
2	Quiz	2	2.5%	5
3	Project	1	13%	13
4	In-Class Problem Solving	5	2%	10
5	Peer Assessment	1	2%	2
6	Test 1	1	20%	20
7	Final Exam	1	40%	40
	Overall Total			100