SSCE 2393 NUMERICAL METHODS

CHAPTER 1

 NONLINEAR EQUATIONS
Chapter 1: Nonlinear Equations

1.1 Introduction

1.2 Intermediate Value Theorem
1.3 Bisection Method
1.4 Fixed-point Iteration Method (simple iterative method)
1.5 Newton-Raphson Method
1.6 Summary

1.1 Introduction

In this chapter, we will learn how to find the $\operatorname{root}(\mathrm{s})$ of a non-linear equation.

Root/Solution/Zeroes: the value which, substituted in an equation, satisfies the equation.

Example 1: $\quad y=x^{2}-4$.

From the graph, the roots of y are -2 and 2 .

In real applications, it is not always easy to draw the graph to locate the roots. However, we can always find the interval $[a, b]$ where the roots lie.

Steps:

1. Breaking the original equation into few equations.
2. Draw the graphs.
3. Identify the intersection points.
4. Determine the interval.

Example 2:
Find the interval $[\mathrm{a}, \mathrm{b}]$ where the roots for $y=x^{2}-x-3$ lie.

Step 1: Breaking the original equation into few equations.
Set $y=0$.

$$
\begin{aligned}
& x^{2}-x-3=0 \\
& x^{2}=x+3 \\
& \text { Set } y_{1}=x^{2} \text { and } y_{2}=x+3
\end{aligned}
$$

Step 2: Plot y_{1} and y_{2}.

Step 3: Identify the intersection points.

Step 4: Determine the intervals.

$$
\therefore x^{*} \in[2,3] \text { and }[-2,-1] .
$$

1.2 Intermediate Value Theorem (IVT)

- to verify the existence of the roots.

Theorem:

If $f(x) \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$ where $f(a) f(b)<0$, then there exist a number c in $[\mathrm{a}, \mathrm{b}]$ for which $f(c)=K$.

Example 3:
Verify that $x^{5}-2 x^{3}+3 x^{2}-1=0$ has a solution in the interval $[0,1]$.

Solution:

$f(a)=f(0)=-1$
$f(b)=f(1)=1$
$f(a) f(b)=-1<0$
$\therefore x^{*}$ exists in $[0,1]$

1.3 BISECTION METHOD

\Rightarrow Formula : $c_{i}=\frac{a_{i}+b_{i}}{2}$
$>$ Initial guess: a_{0} and b_{0} so that $f\left(a_{0}\right) f\left(b_{0}\right)<0$

$>$ Algorithm:

If $f\left(a_{i}\right) f\left(c_{i}\right)=0$ then STOP. Take $x^{*}=c_{i}$ as a root.
If $f\left(a_{i}\right) f\left(c_{i}\right)<0$ then $a_{i+1}=a_{i}, \quad b_{i+1}=c_{i}$
If $f\left(a_{i}\right) f\left(c_{i}\right)>0$ then $a_{i+1}=c_{i}, \quad b_{i+1}=b_{i}$
$>$ The process is repeated up to i-th step until it satisfies

$$
\text { 1. } f\left(c_{i}\right)=0 \quad \text { 2. }\left|f\left(c_{i}\right)\right|<\varepsilon \quad \text { or } 3 .\left|b_{i}-a_{i}\right|<\varepsilon
$$

for a given value of ε and then take $x^{*} \approx c_{i}$.

Example 4

Solve $f(x)=x^{3}-x^{2}-2$ in the interval [1,2] take $\varepsilon=0.005$. Stop when $\left|f\left(c_{i}\right)\right|<\varepsilon$.

Solution

$i=0$
$a_{0}=1, b_{0}=2$ therefore $c_{0}=\frac{1+2}{2}=1.5$
$\left.\begin{array}{l}f\left(a_{0}\right)=f(1)=1^{3}-1^{2}-2=-2 \\ f\left(c_{0}\right)=f(1.5)=(1.5)^{3}-(1.5)^{2}-2=-0.875\end{array}\right\} \Rightarrow f\left(a_{0}\right) f\left(c_{0}\right)>0$
Therefore: $a_{1}=c_{0}=1.5$ and $b_{1}=b_{0}=2$
$i=1$
$a_{1}=1.5, b_{1}=2$ therefore $c_{1}=\frac{1.5+2}{2}=1.75$
$\left.\begin{array}{l}f\left(a_{1}\right)=f(1.5)=-0.875 \\ f\left(c_{1}\right)=f(1.75)=0.297\end{array}\right\} \Rightarrow f\left(a_{1}\right) f\left(c_{1}\right)<0$
Therefore: $b_{2}=c_{1}=1.75$ and $a_{2}=a_{1}=1.5$
Notice that $\left|f\left(c_{1}\right)\right|>\varepsilon$,
so repeat the above step for $i=2,3, .$. until satisfying the conditions.

i	a_{i}	b_{i}	c_{i}	$f\left(a_{i}\right)$	$f\left(c_{i}\right)$	$\left\|f\left(c_{i}\right)\right\|$	$f\left(a_{i}\right) f\left(c_{i}\right)$
0	1	2	1.5	-2	-0.875	0.875	+
1	1.5	2	1.75	-0.875	0.297	0.297	-
2	1.5	1.75	1.625	-0.875	-0.350	0.350	+
6	1.688	1.704	$\mathbf{1 . 6 9 6}$	-0.040	0.002	$\mathbf{0 . 0 0 2}$	

From the table above, the algorithms stop at $i=6$ since $\left|f\left(c_{i}\right)\right|<\varepsilon$.
Therefore, $x^{*}=c_{6}=1.696$

1.4 FIXED-POINT ITERATION METHOD

$>$ Formula: $x_{i+1}=g\left(x_{i}\right)$
$>$ Convergence: $-1 \leq g^{\prime}\left(x_{i}\right) \leq 1 \quad$ (or $\left.\left|g^{\prime}(x)\right| \leq 1\right)$
$>$ Initial guess: x_{0} which is close to the root x^{*}.
$>$ Do the iteration up to i-th step until $\left|x_{i}-x_{i-1}\right|<\varepsilon$ for a given value of ε and take $x^{*} \approx x_{i}$.

Example 5

Find a root for $f(x)=x^{3}-x^{2}-2$ in the interval [1, 2], and take $\varepsilon=0.005$.

Solution

Step 1: find $g(x)$
Set $f(x)=0$ to get $x=g(x)$
$\Rightarrow x^{3}-x^{2}-2=0$
$x^{3}=x^{2}+2$
$x=\left(x^{2}+2\right)^{\frac{1}{3}}$
$\therefore g(x)=\left(x^{2}+2\right)^{\frac{1}{3}} \quad$ and $\quad g^{\prime}(x)=\frac{2 x}{3}\left(x^{2}+2\right)^{\frac{-2}{3}}$
$\therefore x_{i+1}=\left(x_{i}^{2}+2\right)^{\frac{1}{3}}$

Step 2: Iteration

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
i=0 \\
\text { Let } x_{0}
\end{array}=1 \\
x_{1}=\left(x_{0}^{2}+2\right)^{\frac{1}{3}} \\
\quad=\left(1^{2}+2\right)^{\frac{1}{3}}=1.442 \\
\text { and }\left|g^{\prime}\left(x_{0}\right)\right|=\left|\frac{2(1)}{3}\left(1^{2}+2\right)^{\frac{-2}{3}}\right|=0.320 \text { satisfies }-1 \leq g^{\prime}\left(x_{i}\right) \leq 1 . \\
\begin{array}{l}
\frac{i=1}{x_{1}}=1.442 \\
x_{2}
\end{array} \\
\quad=\left(x_{1}^{2}+2\right)^{\frac{1}{3}} \\
=\left((1.442)^{2}+2\right)^{\frac{1}{3}}=1.598
\end{array}
\end{aligned}
$$

and $\left|g^{\prime}\left(x_{1}\right)\right|=0.377$ satisfies $-1 \leq g^{\prime}\left(x_{i}\right) \leq 1$.
Error $=\left|x_{1}-x_{0}\right|=|1.442-1|=0.442>\varepsilon$, so continue for $i=2$

Proceed until the stopping condition is met.

i	x_{i}	$\left\|x_{i}-x_{i-1}\right\|$
0	1	
1	1.442	0.442
2	1.598	0.156
6	$\mathbf{1 . 6 9 3}$	$\mathbf{0 . 0 0 4}$

$$
i=6 \text { to get } x^{*}=x_{6}=1.693
$$

Example 2:

Show that $x^{2}-3 x+e^{x}-2=0$ can be manipulated to form
$x=\frac{x^{2}+e^{x}-2}{3}$. Then, find a root, x^{*} using fixed-point iteration method. Use $x_{0}=-1$.

Solution:

$$
\begin{aligned}
& x^{2}-3 x+e^{x}-2=0 \\
& 3 x=x^{2}+e^{x}-2 \\
& x=\frac{x^{2}+e^{x}-2}{3}(\text { shown }) \\
& x=g(x) \\
&=\frac{x^{2}+e^{x}-2}{3} \quad \longrightarrow \quad x_{i+1}=g\left(x_{i}\right) \\
&=\frac{x_{i}^{2}+e_{i}^{x}-2}{3}
\end{aligned}
$$

i	x_{i}	$\left\|x_{i}-x_{i-1}\right\|$
0	-1	
1	-0.2107	0.7893
2	-0.3819	0.1712
3		
4		

$$
\therefore \quad x^{*} \approx x_{4}=-0.3903
$$

1.5 NEWTON-RAPHSON METHOD

Formula : $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
Initial guess: $x_{0}=a$ or $x_{0}=b$ so that $f\left(a_{0}\right) f\left(b_{0}\right)<0$

Do the iteration up to i-th step until
$f\left(x_{i}\right)=0,\left|f\left(x_{i}\right)\right|<\varepsilon$ or $\left|x_{i}-x_{i-1}\right|<\varepsilon$ for a given value of ε and take $x^{*} \approx x_{i}$.

Example 1

Find a root for $f(x)=x^{3}-x^{2}-2$ in the interval [1, 2] and take $\varepsilon=0.005$. Stop when $\left|x_{i}-x_{i-1}\right|<\varepsilon$.

Solution

*you can choose any number between 1 and 2 to start, x_{0}.

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}-2 \\
& f^{\prime}(x)=3 x^{2}-2 x \\
& \underline{i=0} \\
& x_{0}=1, \quad \text { so } x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& \quad=1-\frac{-2}{1}=3
\end{aligned}
$$

Continue for next $i=1$

$$
\begin{aligned}
& \underline{i=1} \\
& \begin{aligned}
x_{1}=3, \quad \text { so } x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =3-\frac{16}{21}=2.238
\end{aligned}
\end{aligned}
$$

Notice that error $=\left|x_{1}-x_{0}\right|=|3-1|=2>\varepsilon$, so continue for $i=2$.

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	$\left\|x_{i}-x_{i-1}\right\|$
0	1	-2	1	
1	3	16	21	2
2	2.238	4.201	10.550	0.762
6	1.696	0.002	5.237	$\mathbf{0 . 0 0 0}$

Stop the algorithm at $i=6$ to get $x^{*}=x_{6}=1.696$ where $\left|x_{6}-x_{5}\right|=0<\varepsilon$

