SSCE 2393 NUMERICAL METHODS

CHAPTER 1 NONLINEAR EQUATIONS

Farhana Johar, Department of Mathematical Sciences, Faculty of Science, UTM. <u>farhanajohar@utm.my</u>

Chapter 1: Nonlinear Equations

- 1.1 Introduction
- 1.2 Intermediate Value Theorem
- 1.3 Bisection Method
- 1.4 Fixed-point Iteration Method (simple iterative method)
- 1.5 Newton-Raphson Method
- 1.6 Summary

<u>1.1 Introduction</u>

In this chapter, we will learn how to find the root(s) of a non-linear equation.

Root/Solution/Zeroes: the value which, substituted in an equation, satisfies the equation.

Example 1: $y = x^2 - 4$.

From the graph, the roots of *y* are -2 and 2.

In real applications, it is not always easy to draw the graph to locate the roots. However, we can always find the interval [a, b] where the roots lie.

Steps:

- 1. Breaking the original equation into few equations.
- 2. Draw the graphs.
- 3. Identify the intersection points.
- 4. Determine the interval.

Example 2: Find the interval [a, b] where the roots for $y = x^2 - x - 3$ lie.

Step 1: Breaking the original equation into few equations.

Step 3: Identify the intersection points.

Step 4: Determine the intervals.

$$\therefore x^* \in [2,3] \text{ and } [-2,-1].$$

1.2 Intermediate Value Theorem (IVT)

• to verify the existence of the roots.

Theorem:

Example 3: Verify that $x^5 - 2x^3 + 3x^2 - 1 = 0$ has a solution in the interval [0,1].

Solution:

1.3 BISECTION METHOD

➢ Formula :
$$c_i = \frac{a_i + b_i}{2}$$
➢ Initial guess: a_0 and b_0 so that $f(a_0)f(b_0) < 0$

> Algorithm:

If $f(a_i)f(c_i) = 0$ then STOP. Take $x^* = c_i$ as a root. If $f(a_i)f(c_i) < 0$ then $a_{i+1} = a_i$, $b_{i+1} = c_i$ If $f(a_i)f(c_i) > 0$ then $a_{i+1} = c_i$, $b_{i+1} = b_i$

> The process is repeated up to *i*-th step until it satisfies

1. $f(c_i) = 0$ 2. $|f(c_i)| < \varepsilon$ or 3. $|b_i - a_i| < \varepsilon$ for a given value of ε and then take $x^* \approx c_i$.

Example 4

Solve $f(x) = x^3 - x^2 - 2$ in the interval [1,2] take $\varepsilon = 0.005$. Stop when $|f(c_i)| < \varepsilon$.

Solution

 $\underline{i} = 0$

$$a_{0} = 1, b_{0} = 2 \text{ therefore } c_{0} = \frac{1+2}{2} = 1.5$$

$$f(a_{0}) = f(1) = 1^{3} - 1^{2} - 2 = -2$$

$$f(c_{0}) = f(1.5) = (1.5)^{3} - (1.5)^{2} - 2 = -0.875$$

$$f(a_{0})f(c_{0}) > 0$$
Therefore: $a_{1} = c_{0} = 1.5$ and $b_{1} = b_{0} = 2$

<u>*i* = 1</u>

$$a_{1} = 1.5, b_{1} = 2 \text{ therefore } c_{1} = \frac{1.5 + 2}{2} = 1.75$$

$$f(a_{1}) = f(1.5) = -0.875$$

$$f(c_{1}) = f(1.75) = 0.297$$

$$\Rightarrow f(a_{1})f(c_{1}) < 0$$

Therefore: $b_2 = c_1 = 1.75$ and $a_2 = a_1 = 1.5$

Notice that $|f(c_1)| > \varepsilon$,

so repeat the above step for i = 2,3,... until satisfying the conditions.

i	a_i	b_i	C _i	$f(a_i)$	$f(c_i)$	$ f(c_i) $	$f(a_i) f(c_i)$
0	1	2	1.5	-2	-0.875	0.875	+
1	1.5	2	1.75	-0.875	0.297	0.297	-
2	1.5	1.75	1.625	-0.875	-0.350	0.350	+
6	1.688	1.704	1.696	-0.040	0.002	0.002	

From the table above, the algorithms stop at i = 6 since $|f(c_i)| < \varepsilon$.

Therefore, $x^* = c_6 = 1.696$

1.4 FIXED-POINT ITERATION METHOD

- Formula: $x_{i+1} = g(x_i)$
- ➤ Convergence: $-1 \le g'(x_i) \le 1$ (or $|g'(x)| \le 1$)
- ▶ Initial guess: x_0 which is close to the root x^* .
- ▶ Do the iteration up to *i*-th step until $|x_i x_{i-1}| < \varepsilon$ for a given value of ε and take $x^* \approx x_i$.

Example 5

Find a root for $f(x) = x^3 - x^2 - 2$ in the interval [1, 2], and take $\varepsilon = 0.005$.

Solution

<u>Step 1: find *g*(*x*)</u>

Set
$$f(x) = 0$$
 to get $x = g(x)$
 $\Rightarrow x^3 - x^2 - 2 = 0$
 $x^3 = x^2 + 2$
 $x = (x^2 + 2)^{\frac{1}{3}}$
 $\therefore g(x) = (x^2 + 2)^{\frac{1}{3}}$ and $g'(x) = \frac{2x}{3}(x^2 + 2)^{\frac{-2}{3}}$
 $\therefore x_{i+1} = (x_i^2 + 2)^{\frac{1}{3}}$

Step 2: Iteration

$$\frac{i=0}{\text{Let } x_0 = 1}$$

$$x_1 = (x_0^2 + 2)^{\frac{1}{3}}$$

$$= (1^2 + 2)^{\frac{1}{3}} = 1.442$$
and $|g'(x_0)| = \left|\frac{2(1)}{3}(1^2 + 2)^{\frac{-2}{3}}\right| = 0.320$ satisfies $-1 \le g'(x_i) \le 1$.

$$\frac{i=1}{x_1 = 1.442}$$

$$x_2 = (x_1^2 + 2)^{\frac{1}{3}}$$

$$= ((1.442)^2 + 2)^{\frac{1}{3}} = 1.598$$

and
$$|g'(x_1)| = 0.377$$
 satisfies $-1 \le g'(x_i) \le 1$.

Error = $|x_1 - x_0| = |1.442 - 1| = 0.442 > \varepsilon$, so continue for *i* = 2

Proceed until the stopping condition is met.

i	x _i	$ x_i - x_{i-1} $
0	1	
1	1.442	0.442
2	1.598	0.156
6	1.693	0.004

$$i = 6$$
 to get $x^* = x_6 = 1.693$

Example 2:

Show that $x^2 - 3x + e^x - 2 = 0$ can be manipulated to form $x = \frac{x^2 + e^x - 2}{3}$. Then, find a root, x^* using fixed-point iteration method. Use $x_0 = -1$.

Solution:

$$x^{2} - 3x + e^{x} - 2 = 0$$

$$3x = x^{2} + e^{x} - 2$$

$$x = \frac{x^{2} + e^{x} - 2}{3}$$
 (shown).

i	x _i	$ x_i - x_{i-1} $
0	-1	
1	-0.2107	0.7893
2	-0.3819	0.1712
3		
4		

$$\therefore x^* \approx x_4 = -0.3903$$

1.5 NEWTON-RAPHSON METHOD

Formula : $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ Initial guess: $x_0 = a$ or $x_0 = b$ so that $f(a_0)f(b_0) < 0$

Do the iteration up to *i*-th step until $f(x_i) = 0$, $|f(x_i)| < \varepsilon$ or $|x_i - x_{i-1}| < \varepsilon$ for a given value of ε and take $x^* \approx x_i$.

Example 1

Find a root for $f(x) = x^3 - x^2 - 2$ in the interval [1, 2] and take $\varepsilon = 0.005$. Stop when $|x_i - x_{i-1}| < \varepsilon$.

Solution

*you can choose any number between 1 and 2 to start, x_0 .

$$f(x) = x^{3} - x^{2} - 2$$

$$f'(x) = 3x^{2} - 2x$$

$$\underline{i = 0}$$

$$x_{0} = 1, \text{ so } x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$= 1 - \frac{-2}{1} = 3$$

Continue for next i = 1

$$\frac{i=1}{x_1 = 3}, \quad \text{so } x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
$$= 3 - \frac{16}{21} = 2.238$$
Notice that error = $|x_1 - x_1| = |2 - 1| = 2$, so an equation of

Notice that error = $|x_1 - x_0| = |3 - 1| = 2 > \varepsilon$, so continue for i = 2.

i	x _i	$f(x_i)$	$f'(x_i)$	$ x_i - x_{i-1} $
0	1	-2	1	
1	3	16	21	2
2	2.238	4.201	10.550	0.762
6	1.696	0.002	5.237	0.000

Stop the algorithm at i = 6 to get $x^* = x_6 = 1.696$ where $|x_6 - x_5| = 0 < \varepsilon$