SSCE 2393 NUMERICAL METHODS

CHAPTER 4
CURVE FITTING

Farhana Johar, Department of Mathematical Sciences, Faculty of Science, UTM.
farhanajohar@utm.my

Overview of Chapter 4

4.1 Introduction to Data Fitting
4.2 Least Square Curve Fitting
4.3 Data Linearization

4.1 Introduction to Data Fitting

- An important area in approximation is the problem of fitting a curve to experimental data. Since the data is experimental, we must assume that it is polluted with some degree of errormost commonly measurement error.
- So, we do not necessarily want to construct a curve that goes through every data point.
- Rather, we want to construct a function that represents the 'sense of data' and is, in some sense, a close approximation to the data.
(An Introduction to Numerical Methods and Analysis, J.F.
Epperson, 2002, John Wiley \& Sons, Inc)

4.2 Lease Square Curve Fiting

The most common approach is known as least squares data fitting.

- Is a method of finding a function which 'best' fit the data. (the line not necessarily pass through all points.)
- Rule: the sum of square error must be minimum.
- This method is called Least Squares Method and the curve that is obtained is called Least Squares Curve.

Least Squares Method

The easiest method of finding a least squares curve is by using a polynomial function.

- Linear polynomial
- Quadratic/parabolic polynomial

4.2.1 Linear Least Squares

For a given set of data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$, we want to find an equation of a line $y=A+B x$ which minimize the total of squares error,

$$
S=\sum_{i=0}^{n}\left(y_{i}-y\left(x_{i}\right)\right)^{2}=\sum_{i=0}^{n}\left(y_{i}-A-B x_{i}\right)^{2}
$$

S is minimum when $\frac{\partial S}{\partial A}=0$ and $\frac{\partial S}{\partial B}=0$.

These yield:

$$
\begin{aligned}
& \sum_{i=0}^{n} 2\left(y_{i}-A-B x_{i}\right)(-1)=0 \\
& \sum_{i=0}^{n} 2\left(y_{i}-A-B x_{i}\right)\left(-x_{i}\right)=0
\end{aligned}
$$

Divide every equation with (-2) and expand it to get normal equations as follows:

$$
\begin{aligned}
& A \sum_{i=0}^{n} 1+B \sum_{i=0}^{n} x_{i}=\sum_{i=0}^{n} y_{i} \\
& A \sum_{i=0}^{n} x_{i}+B \sum_{i=0}^{n} x_{i}^{2}=\sum_{i=0}^{n} x_{i} y_{i}
\end{aligned}
$$

or in matrix form:

$$
\left(\begin{array}{cc}
\sum_{i=0}^{n} 1 & \sum_{i=0}^{n} x_{i} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2}
\end{array}\right)\binom{A}{B}=\binom{\sum_{i=0}^{n} y_{i}}{\sum_{i=0}^{n} x_{i} y_{i}}
$$

Solve the system above to find a value of A and B and substitute in $y=A+B x$ (the least squares line).

Example 1

Given the six data points $(0,0.98),(0.1,1.01),(0.2,0.99)$, $(0.3,0.88),(0.4,0.85)$, and $(0.5,0.77)$ which are represent by the function $y(x)=a+b x^{2}$. Apply the least-squares method to find a and b. Then, compute the total squares error, S.

4.2.2 Parabolic/Quadratic Least Squares

For a given set of data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$, we want to find a parabolic equation $y=A+B x+C x^{2}$ which minimize the total least squares error:

$$
S=\sum_{i=0}^{n}\left(y_{i}-y\left(x_{i}\right)\right)^{2}=\sum_{i=0}^{n}\left(y_{i}-A-B x_{i}-C x_{i}^{2}\right)^{2}
$$

S is minimum if $\frac{\partial S}{\partial A}=0, \frac{\partial S}{\partial B}=0$ and $\frac{\partial S}{\partial C}=0$.

And we get,

$$
\begin{aligned}
& \sum_{i=0}^{n} 2\left(y_{i}-A-B x_{i}-C x_{i}^{2}\right)(-1)=0 \\
& \sum_{i=0}^{n} 2\left(y_{i}-A-B x_{i}-C x_{i}^{2}\right)\left(-x_{i}\right)=0 \\
& \sum_{i=0}^{n} 2\left(y_{i}-A-B x_{i}-C x_{i}^{2}\right)\left(-x_{i}^{2}\right)=0
\end{aligned}
$$

Divide every equation with (-2) and expand it to get the normal equations:

$$
\begin{aligned}
& A \sum_{i=0}^{n} 1+B \sum_{i=0}^{n} x_{i}+C \sum_{i=0}^{n} x_{i}^{2}=\sum_{i=0}^{n} y_{i} \\
& A \sum_{i=0}^{n} x_{i}+B \sum_{i=0}^{n} x_{i}^{2}+C \sum_{i=0}^{n} x_{i}^{3}=\sum_{i=0}^{n} x_{i} y_{i} \\
& A \sum_{i=0}^{n} x_{i}^{2}+B \sum_{i=0}^{n} x_{i}^{3}+C \sum_{i=0}^{n} x_{i}^{4}=\sum_{i=0}^{n} x_{i}{ }^{2} y_{i}
\end{aligned}
$$

or in the matrix form;

$$
\left(\begin{array}{ccc}
\sum_{i=0}^{n} 1 & \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}{ }^{2} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}{ }^{2} & \sum_{i=0}^{n} x_{i}^{3} \\
\sum_{i=0}^{n} x_{i}{ }^{2} & \sum_{i=0}^{n} x_{i}{ }^{3} & \sum_{i=0}^{n} x_{i}^{4}
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{c}
\sum_{i=0}^{n} y_{i} \\
\sum_{i=0}^{n} x_{i} y_{i} \\
\sum_{i=0}^{n} x_{i} y_{i}
\end{array}\right)
$$

Solve the above system for a value of A, B and C to finally obtain the parabolic equation $y=A+B x+C x^{2}$.

4.3 Least Squares Power Function

Let say a set of data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$ is going to be fit into a power function in the form of

$$
y=A x^{B}
$$

where B is a constant.

Therefore, we need to find A so that the total least squares error, S is minimum:

$$
S=\sum_{i=0}^{n}\left(y_{i}-y\left(x_{i}\right)\right)^{2}=\sum_{i=0}^{n}\left(y_{i}-A x_{i}^{B}\right)^{2}
$$

S is minimum when

$$
\frac{\partial S}{\partial A}=0 \longrightarrow 2 \sum_{i=0}^{n}\left(y_{i}-A x_{i}^{B}\right)\left(-x_{i}^{B}\right)=0
$$

Divide the above equation with (-2) and factorize it to get:
$\sum_{i=0}^{n} x_{i}{ }^{B} y_{i}-A \sum_{i=0}^{n} x_{i}^{2 B}=0$ or $A=\frac{\sum_{i=0}^{n} x_{i}{ }^{B} y_{i}}{\sum_{i=0}^{n} x_{i}{ }^{2 B}}$

Example:

Recent world records for men's weight lifting is given as follows:

$W(\mathrm{~kg})$	52	56	60	67.5	75	82.5	90	100	110
$L(\mathrm{~kg})$	252.5	277.5	302.5	345	360	400	415	430	427.5

The higher the weight class, the greater the lift. Accordingly, it is proposed that lift should be proportional to $W^{2 / 3}$ which arise the equation $L=c W^{2 / 3}$. Determine the constant c by the least-squares method.

4.4 Data Linearization

Let say a set of data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$ is going to be fit into a power function in the form of

$$
y=C e^{D x}
$$

where C and D are constants. Apply In to both sides to yield

$$
\underbrace{\ln (y)}_{Y}=\underbrace{\ln (C)}+\underbrace{D x}_{B X}
$$

$>$ linear form: $Y=\mathrm{A}+\mathrm{BX}$

Solve for value A and B to get $y=C e^{D x}$.

Example 1:

Given the following data;

V	160	180	200	220	240
T	7	5.5	5.0	3.5	2.0

If $V T^{a}=b,(a, b$ constants), then determine the value of a and b by the least squares method.

