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5.0 Introduction to Numerical Differentiation

* The problem arises: in practical applications a function is
only known at a few points.

* For example, we may measure the position of a car every
minute via a GPS (Global Positioning System) unit, and we
want to compute its speed. If the position is known as a
continuous function of time, we can find the speed by
differentiating this function. But, when the position is only
known at isolated times, this is not possible.

* Thus, numerical approach is used.



5.1 Numerical Differentiation: List of formulae

Aim: To Findf’(x) and f”(x) using numerical approach.

Formula
Forward f’(x)=f(x+hh)_f(x)
¢-points Backward f,(x)=f(x)—£(x—h)
Centered NIL
/' N P Fx+2h)+4 f(x+h)-3 f(x)
2h
3points | Backward i3 )4 f(xz—hh)+ f(x=2h)
Centered f,(x)=f(X+h)—f(x—h)
2h
-2 h
Forward f”(x):f(x+2h) ]j;(x'l' J+/(x)
-2f(x-h -2h
Backward f"(x)=f(x) f(xh2)+f(x )
f” 3-points Centered f”(x)=f(x+h)_2f(2x)+f(X—/’l)
h
Backward f(4)(x)=f(x)_4f(x_h)+6f(X—hih)—4f(x—3h)+f(x—4h)
Centered porewi (x+2h)-4f (x+h)+6ﬁx)—4 fx=h)+f(x-2h)

h = step size




How do they derive?

All of the above formulae are derived from the Taylor series.

General equations of Taylor series for f(x + A):

2 ,n 3 ,m Y/ (/7)
Sahy= @)+ A () /;(X)JZ /) AT

3! A

5.2 Deriving 15t derivative, /'(x) using Taylor series. (ALL)

a) 2 points forward difference

f(x+h)= f(x)+hf'(x) (1a)
71(x) = Sx+ hz aAC)) (15)

b) 2 points backward difference

f(x=h)= f(x)=hf'(x) (2a)
f’(x)zf('x)_z(x_h) (Zb)

+...



d)

3 points centered difference
(1a) - (2a) yields:

f(x+h)= f(x=h)=2hf"(x) (3a)

£1(x) = f(x+h)2—hf(x—h) (3b)

3 points forward difference

fx+h)= f(x)+hf(x) (4a)
f(x+2h) = f(x)+2hf"(x) (4b)

4 x(4a) - (4b):

4f(x+h)=4f(x)+4hf"(x)
f(x+2h)= f(x)+2hf"'(x)
Af(x+h)= f(x+2h)=3f(x)+2hf"(x)

iy < o) - fg;; 2h) -3 (x)




e) 3 points backward difference

f(x=h)= f(x)=hf'(x) (Sa)
f(x=2h) = f(x)-2hf"(x) (5b)

4 x(5a) - (5b):

2h



5.3 Deriving 2 derivative, f/"(x) using Taylor series. (Centered)

a) 3 points centered difference

2
Fx+h) ~f<x>+hf'<x>+%f”<x> (1a)
2
Fa=h) = £ =B )+ £ (1)
(1a) + (1b)

S+ + f(x—h)=2f(x)+h*f"(x)
POREACELL, f;; —h)-2f(x)

Example 1:

Given the data below:

» | 1.2 | 14 | 16 1.8
x| 25 | 36 | 38 3.5

a) Estimate f'(1.6)using 3 points backward formula.

b) Estimate f"(1.6)using 3 points centered formula.



Example 2:

Construct a table of value for

f(x) _ sin(x3 )cos(2x)

1+x

when x =0.8,1.0,1.2,1.4,1.6. By using centered difference
formulae, determine first derivative and second derivative for the

above function at x=1.2.

5.4 Finding 15t order and 2"d order derivatives using

Newton’s difference formula.

Recall from chapter 3, Newton’s divided difference:

f(x)an(x)=fO[O] +f0[1](x—x0)+f0[2](x—x0)(x—x1)+...

Therefore,
) dP
xX)=—
f(x) n

oo (P
f(x)_dx(dx)



Also recall, Newton’s forward difference:

r(r —I)Azfo N r(r —1)(r - 2)A3f0 .

f(x)=P,(x)=fo+rAfy+

2! 3!
X—X
where » = 0
Therefore,
Y _db dr
f(x)_dx_dr dx
) d (dP d (dP dr
frey =S ) =[S
dx\ dx dx\ dr dx

Example 1

Given the table below:

1.0

1.4

1.8

2.2

2.6

3.0

f(x)

0.8415

0.9854

0.9738

0.8086

0.5105

0.1411

Estimate the value of f" (2.0) and f"(Z.O) with Newton’s forward

difference cubic polynomial.




Example 2:

i)  Complete the divided difference’s table below:

i [ [ | P £

0 (2 14 22 (c)? 1

1 |3 (a)? | (b)? 17

2 |6 234 | 151

3 |8 536

ii) From (i), determine the Newton divided difference’s
polynomial.

iii) From (ii), estimate value of f when x = 2.5 and 6.4.

iv) Hence, estimate f'(2), f"(3) and f"'(4).

Give your answer in 3 decimal places.




