DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE UNIVERSITI TEKNOLOGI MALAYSIA

SSH 1033 MATHEMATICAL METHODS 2

TUTORIAL38

1. Evaluate the following iterated integrals.

(a)
$$\int_{0}^{1} \int_{2y}^{2} e^{y-x} dx dy.$$
 (b) $\int_{1}^{2} \int_{x^{3}}^{4x^{3}} \frac{1}{y} dy dx.$
(c) $\int_{1}^{9} \int_{1}^{y^{2}} \sqrt{\frac{y}{x}} dx dy.$ (d) $\int_{0}^{\pi} \int_{0}^{\sin x} y dy dx.$
(e) $\int_{0}^{\pi} \int_{0}^{2y} \sin(x+y) dx dy.$ (f) $\int_{0}^{2} \int_{x^{2}}^{2x^{2}} x \cos y dy dx.$
(g) $\int_{1}^{3} \int_{0}^{1} \frac{2xy}{x^{2}+1} dx dy.$ (h) $\int_{1}^{2} \int_{x^{3}}^{x} e^{y/x} dy dx.$
(i) $\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} (\sqrt{x}-y) dx dy.$ (j) $\int_{0}^{\pi} \int_{0}^{4} x^{2} \sin^{2} y dx dy.$

2. Evaluate the following double integrals.

(a)
$$\int_{0}^{1} \int_{x^{3}}^{x^{2}} (x^{2} - xy) dy dx.$$

(b) $\int_{1}^{e^{2}} \int_{1}^{y} \ln x dx dy.$
(c) $\int_{1}^{2} \int_{0}^{1} \frac{y - x}{(x + y)^{3}} dx dy.$ Hint: Use $y - x = 2y - (x + y).$

- 3. Evaluate the following integrals.
 - (a) ∫∫_R (2xy x²) dA, where R is the triangle bounded by x = -1, y = -1 and 4x + 3y = 5.
 (b) ∫∫_R (y² 2x) dA, where R is the region bounded by y = 1 x, y = 1 + x and y = 3.
 (c) ∫∫_R xy dA, where R is the region bounded by y² = 4x and 2x y = 4.
 (d) ∫∫_R y dA, where R is the region in the first quadrant of xy plane, bounded by the curve y² = x, the line y = 2 x and the x-axis.
 (e) ∫∫_P (x² + y) dA, where R is the region inside a triangle with vertices (0, 0), (1, 1) and (1, -1).

(f) $\iint_{\mathcal{R}} \cos(y^2) dA$, where \mathcal{R} is the region bounded by 2y = x, the line $2y^2 = \pi$ and y-axis.

(g)
$$\iint_{i\mathcal{R}} 2x \, dA$$
, where \mathcal{R} is the region bounded by the curve $y = 1/x^2$, the lines $y = x, x = 2$ and $x = \frac{1}{2}$ axis.

(h)
$$\iint_{\mathcal{R}} (2x-y) dA$$
, where \mathcal{R} is the portion of the interior of the circle $x^2 + y^2 = 9$ lying in the fourth quadrant.

$$x^2y^2 dA$$
, where \mathcal{R} is the triangle whose vertices are $(0, 0)$, $(1, 0)$ and $(1, 1)$.

$$e^{x^3} dA$$
, where \mathcal{R} is the region bounded by $y = x^2$, the line $x = 1$, and the x -axis.

(k)
$$\iint_{\mathcal{P}} x \, dA$$
, where \mathcal{R} is the region in the first quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

4. Evaluate the following integrals by changing the order of integration.

(a)
$$\int_{0}^{1} \int_{2y}^{2} \cos(x^{2}) dx dy.$$
 (b) $\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy.$
(c) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx.$ (d) $\int_{0}^{1} \int_{x^{3}}^{1} \frac{x^{2}y}{4+y^{3}} dy dx.$
(e) $\int_{0}^{1} \int_{y^{2}}^{1} y e^{x^{2}} dx dy.$ (f) $\int_{0}^{1} \int_{x}^{2-x} \frac{x}{y} dy dx.$
Given $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy.$

- (a) Sketch the region of the double integral.
- (b) Interchange the order of integration. Hence evaluate the double integral.
- 6. Given the following integral

(i)

(j)

5.

$$\int_{-2}^{2} \int_{-2}^{2-x^2} f(x,y) \, dy \, dx.$$

Sketch the region of integration. Obtain the equivalent integral in the reversed order.

7. Consider the following iterated integrals.

$$\int_0^1 \int_x^{4\sqrt{x}} \frac{1}{1+y^2} \, dy \, dx + \int_1^4 \int_x^4 \frac{1}{1+y^2} \, dy \, dx.$$

- (a) Sketch the region of the integration.
- (b) Write the iterated integrals as one double integral and evaluate it.
- 8. Use double integral to find the area of the closed region \mathcal{R} described.
 - (a) \mathcal{R} is bounded by the curves $y = \sin x$, $y = \cos x$ and the lines $x = \frac{1}{4}\pi$ and $x = \frac{1}{2}\pi$.
 - (b) \mathcal{R} is bounded by the curve $x = -y^2$, the lines y = x 4, y = -2, and y = 2:
 - (c) \mathcal{R} is bounded by the curves $y^2 = 9x$ and $9y = x^2$.

2

R

- (d) \mathcal{R} is bounded by the curve $y = 5 x^2$ and the line y = x + 3.
- (e) \mathcal{R} is bounded by the curves $y = 1/x^2$, $y = -x^2$, and the lines x = 1, x = 2.
- 9. Use double integrals to find the volume of the solid G described.
 - (a) G is the solid in the first octant bounded by x + y + z = 4 and the coordinate planes.
 - (b) G is bounded by the planes z = 0, x = 1, x = 2, y = -1, y = 1 and the surface $z = x^2 + y^2$.
 - (c) G is bounded by the cylinder $x^2 + y^2 = 9$, and the planes z = 1 and x + z = 5.
 - (d) G is bounded by the surfaces z = 0, z = x, and $y^2 = 2 x$.
 - (e) G is bounded by the planes z = 0, y = 0, y = x, x + y = 2, and x + x + z = 3.
- 10. Show that the solid enclosed by the xy-plane and the surface $z = 4 x^2 y^2$ has volume

$$\iint_{\mathcal{R}} \left(4-x^2-y^2\right) dx \, dy,$$

where \mathcal{R} is a region (to be specified) in the xy-plane. Hence, evaluate the volume.

11. Prove that the volume V enclosed by the sphere $x^2 + y^2 + z^2 = a^2$ and the cylinder $x^2 + y^2 = ay$ is given by

$$V=2\iint \sqrt{a^2-x^2-y^2}\,\,dx\,dy,$$

the integral being taken over the circle $x^2 + y^2 = ay$. Transform the integral into polar coordinates, and hence show that

$$V=\frac{4}{3}a^3\left(\frac{\pi}{2}-\frac{2}{3}\right).$$

- 12. Use double integral to find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.
- 13. Evaluate by changing to polar coordinates.

(a) $\iint\limits_{\mathcal{R}} e^{-(x^2+y^2)} dA,$	where \mathcal{R} is the region above the x-axis and bounded by the semicircle $x^2 + y^2 = 1$.
(b) $\iint_{\mathcal{R}} x^2 y dA$,	where \mathcal{R} is the region in the first quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
(c) $\iint_{\mathcal{R}} 2y dA$,	where \mathcal{R} is the smaller segment of the circle $(x-1)^2 + y^2 = 1$ cut off by the line $y = x$.
(d) $\iint_{\mathcal{R}} \frac{1}{1+x^2+y^2} dA,$	where \mathcal{R} is the region in the first quadrant bounded by the line $y = x$, the x-axis and the circle $x^2 + y^2 = 4$.
(e) $\iint_{\mathcal{R}} (2x-y) dA$,	where \mathcal{R} is the portion of the interior of the circle $x^2 + y^2 = 9$ lying in the fourth quadrant.
(f) $\iint_{\mathcal{R}} x dA$,	where \mathcal{R} is the smaller segment of the circle $x^2 + y^2 = 2y$ cut off by the line $y = x$.

14. Evaluate the following integrals using polar coordinates.

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} (x^{2}+y^{2}) dy dx.$$
 (b) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \frac{xy}{\sqrt{x^{2}+y^{2}}} dy dx.$
(c) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \cos(x^{2}+y^{2}) dx dy.$ (d) $\int_{-1}^{0} \int_{-\sqrt{1-x^{2}}}^{0} \left(1+\sqrt{x^{2}+y^{2}}\right) dy dx.$
(e) $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} (1+x^{2}+y^{2}) dx dy.$ (f) $\int_{0}^{2} \int_{-\sqrt{y(2-y)}}^{\sqrt{4-y^{2}}} \frac{y}{x^{2}+y^{2}} dx dy.$

TU

- 15. Given \mathcal{R} is a region bounded by the lines y = x, y = 0 and x = 1.
 - (a) Sketch the region \mathcal{R} .

(b) Use polar coordinates to evaluate
$$\iint_{\mathcal{R}} \frac{x}{\sqrt{x^2 + y^2}} dy dx$$
.

- 16. Given \mathcal{R} is a region on the xy-plane bounded by the lines y = x, y = 1, y = 2 and the y-axis.
 - (a) Sketch the region \mathcal{R} .

(b) Use polar coordinates to evaluate
$$\iint_{\mathcal{P}} \frac{1}{x^2 + y^2} dA$$
.

- 17. Use polar coordinates to find the area of the region given.
 - (a) The region inside the circle $x^2 + y^2 8y = 0$ and outside the circle $x^2 + y^2 = 9$.
 - (b) The region inside the circle $r = 4 \cos \theta$ but outside the circle r = 2.
 - (c) The region inside the circle $r = 3\cos\theta$ but outside the circle $r = \cos\theta$.
 - (d) The region inside the cardiod $r = 1 + \cos \theta$ but outside the circle r = 1.
 - (e) The region inside the circle r = 1 but outside the parabola $r(1 + \cos \theta) = 1$.
 - 18. Find the area of the region in the first quadrant bounded by the circle $r = 2 \sin \theta$.
- 19. Find the area of the region bounded by $r = \sin 3\theta$.
- 20. Find the area of the region in the first quadrant bounded by the circles $(x-1)^2 + y^2 = 1$ and $x^2 + (y-1)^2 = 1$.
- 21. Evaluate $\iint_{\mathcal{R}} \sin \theta \, dA$, where \mathcal{R} is the region in

where \mathcal{R} is the region in the first quadrant bounded by the circle r = 2 and the cardioid $r = 2(1 + \cos \theta)$.

- 22. Evaluate the area in the first quadrant bounded by the curves r = 2, $r = 4\sin\theta$ and $r = 4\cos\theta$.
- 23. Find the volume of the solid which is
 - (a) bounded by the surface $r^2 + z^2 = 4$.
 - (b) bounded by the surfaces z = 0, $2z = x^2 + y^2$, and $x^2 + y^2 = 4$.

4

- (c) bounded by the cone $z^2 = x^2 + y^2$ and the cylinder $x^2 + y^2 = 4$.
- (d) bounded by the cone $z^2 = x^2 + y^2$ and the cylinder $x^2 + y^2 2y = 0$.
- (e) bounded by the sphere $x^2 + y^2 + z^2 = 4$ and the cylinder $x^2 + y^2 = 2x$.
- 24. Consider the region \mathcal{R} in the xy-plane bounded by the lines y = 0, x + y = 2 and the curve $y = x^2$.
 - (a) Show that the area of the region \mathcal{R} is $\frac{5}{c}$.
 - (b) Find the moment of inertia of \mathcal{R} about the z-axis (or with respect to the origin), assuming the density σ is constant.
- 25. Find the centroid of the lamina with uniform density $\delta(x, y) = 1$ bounded by the parabola $y = 2 3x^2$ and the line 3x + 2y = 1.
- 26. Find the centre of gravity of the lamina with density $\delta(x, y) = x^2 + y^2$, satisfying the inequalities $x^2 + y^2 \le 9$ and $y \ge 0$.
- 27. A lamina on the xy-plane has the shape of a semicircle $x^2 + y^2 \le 4$, $y \ge 0$. Find the centre of mass if the density at each point is proportional to its distance from the origin.
- 28. Find the moment of inertia I_x of the lamina which is bounded by the graph $y = 1 x^2$ and x-axis and has density $\delta(x, y) = x^2$.
- 29. Find the mass of a lamina that is bounded by the curve

 $(x-1)^2 + y^2 = 1$ and the line y = x

if the density function of the lamina is $\rho(x, y) = 3 \text{kgm}^{-2}$.

30. Find the mass of a lamina that is bounded by the curves

$$x = y^2$$
 and $x = y$

if the density function of the lamina is $\sigma(x, y) = 2(y + 1) \text{kgm}^{-2}$. Hence find its moment about the x-axis and evaluate \bar{y} , the y-coordinates of the center of mass of the lamina.

- 31. A lamina is bounded by $y = x^2 + 4$ and $y = 8 x^2$ with the density function $\sigma(x, y) = \frac{1}{y^2}$. Find the moment of inertia of the lamina about the x-axis.
- 32. Find the mass, center of mass, and the moment of inertia of a lamina that is bounded by the curve $x = 1 y^2$ and the coordinates axes in the first quadrant with density function $\delta(x, y) = y \text{kgm}^{-2}$.
- 33. Find the mass and the center of mass of a lamina that is bounded by the circle $x^2 + y^2 = 2x$ and the coordinates axes in the first quadrant with density function $\delta(x, y) = xy^2 \text{kgm}^{-2}$.
- 34. Find the mass of a lamina bounded by the lines y = 0, y = 3, x = 1, and the curve $x = \sqrt{4-y}$, if the density at the point (x, y) is $\delta(x, y) = x + y$.
- 35. Find the center of mass of a lamina bounded by $y = x^2$ and y = 4 with density $\delta(x, y) = y$.
- 36. Find the moment of inertia about the x-axis, I_x , of a lamina bounded by a parabola $x = y^2$, the line y = x 2 and the x-axis in the first quadrant with density $\sigma(x, y) = 1$.
- 37. Using double integrals in polar coordinates, find the mass of a semicircular lamina $x^2 + y^2 = 4$, with $y \ge 0$, and density function given by $\delta(x, y) = \sqrt{4 x^2 y^2}$.