You may know these.....
GRAPH OF FUNCTIONS

$$
\begin{aligned}
& y=\sqrt{a^{2}-y^{2}} \\
& \text { reciprocal: }
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}+x^{2}=a^{2} \text {-a } \\
& y=\sqrt{a^{2}-x^{2}} \\
& y=-\sqrt{a^{2}-x^{2}} \\
& x=\sqrt{a^{2}-y^{2}} \\
& x=\sqrt{a^{2}-y^{2}} \quad,
\end{aligned}
$$

$y=\frac{1}{x} \uparrow$
$y=e^{x}+$
$y=x$
parabola:

$$
y=2 x+1 \not /
$$

$$
\begin{aligned}
& x=y^{2} \\
& y=\sqrt{x} \\
& y=\sqrt{x}
\end{aligned}
$$

Ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Chapter 1: Multivariables Functions
1.1 Functions of Two Variables
1.1.1 Function representations
1.1.2 3-D Coordinate System
1.1.3 Graph of two variable functions
1.1.4 Sketching of the function (3-D *Level Curves
1.1.5 Domain and Range
1.2 Functions of Three Variables
1.2.1 Domain and Range 1.2.2 Level Surfaces

1.1 Functions of Two Variables

 $z=f(x, y)$Means that z is a function of x and y in the sense that a unique value of the dependent variable z is determined by specifying values for the independent variables x and y.

$$
\begin{gathered}
(x, y) \in \text { Domain } \\
z \in \text { Range }
\end{gathered}
$$

and
x and y : the two different independent variables
z : the dependent variable
Domain (D) : the set of all possible inputs (x, y) of the function $f(x, y)$ that is

Range (R) : the set of output z that result when (x, y) varies over the domain D

For example,

1. $f(x, y)=\sqrt{x^{2}+y^{2}}$
$f(1,1)=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
2. $z=f(x, y)=\sqrt{64-x^{2}+e^{x y}}$
$f(1,0)=\sqrt{64-1+1}=8$
$f(2,-3)=\sqrt{64-4+e^{-6}}=\sqrt{60+e^{-6}}$

1.1.1 Function Representation of $z=f(x, y)$

3-D coordinate system

$f(x, y)$ is a rule that assigns a unique real number to each point (x, y) in same set D in the $x y$-plane

Coordinate Planes

1.1.2 3-D Coordinate system

3 DIMENSIONAL CARTESIAN COORDINATE SYSTEM

3D coordinate system has 3 main planes:-
xy plane
or $\quad z=0$
($x, y, 0$)
xz plane
or $\quad y=0$
$(x, 0, z)$
yz plane
or $\quad x=0$
($0, y, z$)

The orientation of xyz-axis

1.1.3 Graph of a Function of Two

 VariablesThe graph of the function \boldsymbol{f} of two variables is the set of all points (x, y, z) in three-dimensional space, where the values of (x, y) lie in the domain of f and $z=f(x, y)$.

$(x, y) \in$ Domain and looklike as a surface projection

The graphs of $z=f(x, y)$ is called a surface in 3D system or three-space $\left(\mathfrak{R}^{3}\right)$.

It looks like a blanket!
Four types of surface in space:

1.1.3.1 Planes

Example 1
$z=0, y=0, x=0$
$x=3, y=-1, z=5$
Given as a constant equation with onevariable.

Example 2

$$
y=-x+6,2 y=4 z+5, z+x=4
$$

Given as a linear equation with twovariable.

Example 3 Tetrahedron

$$
\begin{aligned}
& y+x+y=1 \\
& z=6-3 y+2 x
\end{aligned}
$$

Given as a linear equation with threevariable.

How to sketch of the given functions

1) Determine the variables
2) Sketch the trace in coordinate planes (based on the variables exist)
3) Make the projection onto the traceplane which is parallel to the (variables which is not exists)-axis
w) Sketch the trace in the $x y$-plane.
m) Then, the projection onto $x y$-plane is called the plane which parallel to $y z$-plane

Eg 7 : sketch the graph of $z+x+y=1$.
Solution:
The traces in the coordinate planes:
$\rightarrow y z$-plane, $x=0$: the straight line

$$
y=1-z
$$

$\rightarrow x z$-plane, $y=0$: the straight line

$$
z=1-x .
$$

$\rightarrow x y$-plane, $z=0$: the straight line

Exercise 1 :
sketch the graph of $z=6 \cdot 8 y+2 x$
1.1.3.2 Curved surfaces

Examples of the groph $z=f(x, y)$
(i) $z=\frac{1}{3} \sqrt{36-9 x^{2}-4 y^{2}}$

風
(ii) $z=-4 x^{2} y^{2}$

(iii) $z=y^{2}-x^{2}$

sepecti
"Saddle" tuda.
1.1.3.2 CURVED SURFACE
(Monument equation)
(1) Eg: $y=x^{2}$

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& y^{2}-z^{2}=9
\end{aligned}
$$

M. the given eq ${ }^{\frac{n}{s}}$ have two variables.
firstly, sketch the graph trace in a plane (based on the given variables)
(ㅈ)

$$
\begin{aligned}
& \text { Eg: } z=x^{2}+y^{2} \\
& z=\sqrt{x^{2}+y^{2}} \\
& \frac{x^{2}}{9}+\frac{y^{2}}{4}-z^{2}=1
\end{aligned}
$$

W. the given eq^{2} 's have three variables:
firstly, sketch the graph traces in the three planes (coordinate planes)
? ? ? ? ? ?

路

Sketch the graph trace in a plane (based on the given variables)
(3) $x^{2}+y^{2}=25$: circle

Cylinder:
Which generated by the circle $x^{2}+y^{2}=25$ and lies parallel
(5)

parallel, to x-axis

(6) $z=\sqrt{x^{2}+y^{2}}$

$y z$-plane: $\Rightarrow z=x$ or $z=-x$

$$
\begin{aligned}
& =z=\sqrt{y^{2}}, x=0 \\
& \Rightarrow z=4
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow z=y y_{o x} x=-y \\
& \Rightarrow 5=\sqrt{x^{2}+y^{2}} \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow x^{2}+y^{2} & =25 \\
& =-
\end{aligned}
$$

(5) $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}-z^{2}=1$
trei of $x y$-pione:

$$
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1 \quad \text { ellipse }
$$

trail of $y z$-plone : $x=0$

웅 $\frac{y^{2}}{2^{2}}-z^{2}=1 \quad$ hyperbola
trail of x - plane, $y=0$

hyperboioid:

How to sketch curved surfaces?

\checkmark domain and range
\checkmark Level curves

Level Curves

To sketch the graph of two variables, we need to familiar with the contour maps.

Notice that when the plane $z=C$ intersects with the surface $z=f(x, y)$, the result is the space curve with the equation $f(x, y)=C$, so we called these as the level curves.

1.1.4 Sketch of the surface

$$
z=f(x, y)
$$

* the set of point (x, y) in xy-plane that satisfy $f(x, y)$ is called level curves /contour curves

E9: consour map

\& mountain

Sketching surfaces with level

curves

Let $z=f(x, y)$ is a function of two variables
$\checkmark \quad$ Plane $z=C$ intersects with the surface $z=f(x, y) \rightarrow f(x, y)=C$
\checkmark The set of point (x, y) in the xy-plane that satisfy $f(x, y)=C$ is called the level curve of f at C
\checkmark An entire family of level curves is generated as C varies over the range of f

The graph of $z=f(x, y)$ is a surface which can be obtained by sketching the contour map (set of level curves) on xyplane

Example

Sketch the contour lines/level curves and the graphs
(i) $z=x^{2}+y^{2}, c=0,1,2,3,4,9$
(ii) $z=\sqrt{x^{2}+y^{2}}, c=0,1,4,9$
(iii) $z=6-x^{2}-y, c=0,2,4,6$

Solution

(i) $z=x^{2}+y^{2}, c=0,1,2,3,4,9$

Sketching the level curves

- first, replace z with the value of c
- second, plot the graph on the xy-plane $c=0 \quad: x^{2}+y^{2}=0$
$c=1 \quad: x^{2}+y^{2}=1$
$c=2 \quad: x^{2}+y^{2}=2$
$c=3 \quad: x^{2}+y^{2}=3$
$c=4 \quad: x^{2}+y^{2}=4$
$c=9 \quad: x^{2}+y^{2}=9$

The traces in the coordinate planes:

- $y z$-plane, $x=0$: the quadratic curve,

$$
z=y^{2}
$$

- $x z$-plane, $y=0:$ the quadratic curve,

$$
z=x^{2}
$$

- $x y$-plane, $z=0$: a point (the origin)

(ii) $z=\sqrt{x^{2}+y^{2}}, c=0,1,4,9$.

$c=0$	$: \sqrt{x^{2}+y^{2}}=0$
$c=1$	$: \sqrt{x^{2}+y^{2}}=1$
$c=4$	$: \sqrt{x^{2}+y^{2}}=4$
$c=9$	$: \sqrt{x^{2}+y^{2}}=9$

The traces in the coordinate planes:

- yz-plane, $x=0$: the straight line, $z=y$
- $x z$-plane, $y=0$: the straight line, $z=x$
- $x y$-plane, $z=0:$ a point (the origin)
- parallel to $x y$-plane, $z=4$: the circle $x^{2}+y^{2}=4^{2}$

$$
\begin{aligned}
& c=1: 1=\sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}=1 \\
& c=4: 4=\sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}=16 \\
& c-9: 9=\sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}=81
\end{aligned}
$$

(ii) $z=6-x^{2}-y, c=0,2,4,6$.

Sketching the level curves

- first, replace z with the value of c
- second, plot the graph on the xy-plane

$$
\begin{array}{ll}
c=0 & : 6-x^{2}-y=0 \Rightarrow y=-x^{2}+6 \\
c=2 & : 6-x^{2}-y=2 \Rightarrow y=-x^{2}+4 \\
c=4 & : 6-x^{2}-y=4 \Rightarrow y=-x^{2}+2 \\
c=6 & : 6-x^{2}-y=6 \Rightarrow y=-x^{2}
\end{array}
$$

1.1.5 Domain and Range of

 $z=f(x, y)$Domain : $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, \underline{? ? ?\}}$
any constraint

??? $f(x, y)$ may consist:

Sometimes we need to sketch the domain of the function given.

Range - z-values that results when (x, y) varies over the domain
(i) z positive ?
(ii) z negative ?
(iii) z zero ?
(iv) z has maximum value ?
(v) z has minimum value?

Range $:\{z \mid z \in \mathbb{R}$, ??? $\}$
put the limitation of z here!!

Example

Describe the domain and the range of $z=\sqrt{64-4 x^{2}-y^{2}}$.

Solution
The sketching of Domain

Domain : $\left\{(x, y) / x \in \mathbb{R}, y \in R, \quad 64-4 x^{2}-y^{\prime} ; 0\right\}$
or
Domain: $\left\{(x, y) \mid x \in \mathbb{R}, y \in R, \frac{x^{2}}{16}+\frac{y^{\circ}}{64} \leq 1\right\}$
Range: $\{z / z \in \mathbb{R}, O \subseteq z \subseteq \sqrt{64}\}$
Range: $\{z \mid z \in \mathbb{R}, O \in z \in 8\}$

Example
Find the domain and range of $z=x^{2} \sqrt{y}-1$.
Solution
Constraint : $y \geqslant 0$
Domain : $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}$,
Range: ? $y \geqslant 0\}$

$$
\begin{aligned}
& \quad x^{2} \sqrt{y} \geqslant 0 \quad \text { (always tue) } \\
& \therefore \quad z \geqslant-1 \\
& \Rightarrow \text { Range }:\{z \mid z \in \mathbb{R}, \quad z \geqslant-1\}
\end{aligned}
$$

Sketching of domain

Example
Find the domain and the range of $z=\ln \left(x^{2}-y\right)$.
Solution

$$
\left.\begin{array}{l}
\text { Constraint : } x^{2}-y>0 \Rightarrow y<x^{2} \\
\therefore \text { Domain: }\left\{(x, y) \mid x \in R, y \in R, y<x^{2}\right\} \\
\text { sketching }
\end{array}\right\}
$$

Example

Find the domain and the range of
$z=4-x^{2}-y^{2}$.

Solution

Domain : $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$

Range : $\{z \mid z \in \mathbb{R}, z \leq 4\}$

1.2 Functions of Three Variables 1.2.1 Domain and Range

Definition

A function \boldsymbol{f} of three variables is a rule that assigns to each ordered triple (x, y, z) in some domain D in space a unique real number $w=f(x, y, z)$.
The range consists of the output values for w.

Example 1

Identify the domain and range for the following functions.
a). $w=\sqrt{x^{2}+y^{2}+z^{2}}$
$x^{2}+y^{2}+z^{2} \geq 0$ for all points in space.
Domain : entire space
Domain : $\left\{(x, y, z) \mid x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, x^{2}+y^{2}+z^{2} \geq 0\right\}$

Range : [0, ∞)

Range $:\{w \mid w \in \mathbb{R}, w \geq 0\}$
b) $w=\sqrt{1-\left(x^{2}+y^{2}+z^{2}\right)}$

We must have $1-\left(x^{2}+y^{2}+z^{2}\right) \geq 0$ in order to have a real value for $f(x, y, z)$.

Rewriting the condition, we obtained

$$
x^{2}+y^{2}+z^{2} \leq 1
$$

Thus the domain consists of all points on or within the sphere $x^{2}+y^{2}+z^{2}=1$, or

Domain : $\left\{(x, y, z) \mid x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, x^{2}+y^{2}+z^{2} \leq 1\right\}$
Range : [0, 1] or
Range $:\{w \mid w \in \mathbb{R}, 0 \leq w \leq 1\}$
c) $w=\frac{1}{x^{2}+y^{2}+z^{2}}$

Domain : $\{(x, y, z):(x, y, z) \neq(0,0,0)\}$ or

Domain : $\left\{(x, y, z) \mid x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, x^{2}+y^{2}+z^{2} \neq 0\right\}$ Range : $(0, \infty)$ or

Range $:\{w \mid w \in \mathbb{R}, w>0\}$
d) $w=x y \ln z$

Domain : $\{(x, y, z) \mid x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}, z>0\}$
Range : $(-\infty, \infty)$ or
Range $:\{w \mid w \in \mathbb{R},-\infty \leq w \leq \infty\}$

1.2.2 Level Surfaces

The graphs of functions of three variables consist of points $(x, y, z, f(x, y, z))$ lying in four-dimensional space.

- Graphs cannot be sketch effectively in three-dimensional frame of reference.
- Can obtain insight of how function behaves by looking at its threedimensional level surfaces.

The graph of the equation $f(x, y, z)=k$ will generally be a surface in 3 -space which we call the level surface with constant k.

Remark

The term "level surface" is standard. It need not be level in the sense being horizontal; it is simply a surface on which all values of f are the same.

Example

Describe the level surfaces of

(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$
(b) $f(x, y, z)=z^{2}-x^{2}-y^{2}$

Solution

(a) $f(x, y, z)=x^{2}+y^{2}+z^{2}$

The level surfaces have equation of the form

$$
x^{2}+y^{2}+z^{2}=k
$$

For $k>0$, the graph of this equation is a sphere of radius \sqrt{k}, centred at the origin.

For $k=0$, the graph is the single point $(0,0,0)$.

For $k<0$, there is no level surface.

> Level surfaces of
> $f(x, y, z)=x^{2}+y^{2}+z^{2}$
b) $f(x, y, z)=z^{2}-x^{2}-y^{2}$

The level surface have equation of the form

$$
z^{2}-x^{2}-y^{2}=k
$$

For $k>0$, the graph is a hyperboloid of two sheets.

For $k=0$, the graph is a cone.
For $k<0$, the graph is a hyperboloid of one sheet.

Level surfaces of

Exersizes

Describe the level surfaces of

(i) $f(x, y, z)=x^{2}+y^{2}$ for $C=4, C=9$.
(ii) $f(x, y, z)=4 x^{2}+y^{2}+4 z^{2}$ for $w=1, w=4$.

