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Chapter 3 Multiple Integral 

3.1 Double Integrals 

3.2 Iterated Integrals 

3.3 Double Integrals in Polar 
Coordinates 

3.4 Triple Integrals 

 Triple Integrals in Cartesian 
Coordinates 

 Triple Integrals in Cylindrical 
Coordinates 

 Triple Integrals in Spherical 
Coordinates 

3.5 Moments and Centre of Mass
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3.1 Double Integrals 

Recall: We think of the integral in two 
different ways. 

In one way we interpret it as the area under 
the graph )(xfy  , while the Fundamental 
Theorem of Calculus enables us to compute 
this using the process of anti-differentiation 
 undoing the differentiation process. 

We think of the area as  

 A = 
1

lim ( ) ( )
bn

k k
n k a

f x x f x dx  

where the first sum is thought of as a limiting 
case, adding up the areas of a number of 
rectangles each of height f (xk), and width xk. 

This leads to the natural generalisation to 
several variables. 
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FIGURE 13.1b 
Area under the curve 
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The double integral ( , )
R

f x y dA has a similar 

interpretation in terms of volume except that 
the approximating elements will be 
rectangular parallelepipeds rather than 
rectangles. 
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We first suppose that ( , ) 0f x y . The graph of 
f is a surface with equation ( , )z f x y . Let s  
be the solid that lies above R and under the 
graph of f. 
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
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Our goal is to find the volume of s . 

 The first step of this process is to divide 
the region R into small rectangles. 

 We can then compare the part of ( , )z f x y  
that lies above the small rectangle, and 
this forms a thin box called rectangular 
parallelepiped. 

 The volume of this parallelepiped is the 
area of the base times the height. 

 Follow this procedure for all of the 
rectangles and add the volumes of the 
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corresponding parallelepipeds, we get an 
approximation of the total volume of s : 

1 1
( , )

n m

i j
i j

V f x y A 

 Now, to find the area exactly, we simply 
make the boxes on the region R infinitely 
small (hence there are infinitely many). 
We do this by taking the limit of the above 
equation: 

, 1 1
lim ( , )

n m

i j
i j i j

V f x y A 
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 By taking the limit above, we arrive at the 
definition of a double integral. 

 

Definition 3.1 
If f is a function of two variables that is defined 
on a region R in the xy-plane, then the double 
integral of f over R is given by 

, 1 1
( , ) lim ( , )

n m

i j
m n i jR

f x y dA f x y A 
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provided this limit exists, in which case f is 
said to be integrable over R. 

Note 
 The double integral of the surface 

( , )z f x y  is the volume between the 
region R and below the surface. 

 The sum: 

1 1
( , )

n m

i j
i j

f x y A 

is called the double Riemann sum and is 
used as an approximation to the value of the 
double integral. 
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The double integral inherits most of the 
properties of the single integral. 

3.1.1 Properties of Double Integrals 

1. constant multiple rule 

( , ) ( , )
R R

c f x y dA c f x y dA, c a constant 

2. linear rule 

[ ( , ) ( , )]

( , ) ( , )
R

R R

f x y g x y dA

f x y dA g x y dA
 

3. subdivision rule 

1 1

( , ) ( , ) ( , )
R R R

f x y dA f x y dA f x y dA 

4. dominance rule, if ( , ) ( , )f x y g x y  

( , ) ( , )
R R

f x y dA g x y dA 
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3.2 Iterated Integrals 

3.2.1 Evaluating Double Integrals 
 It is impractical to obtain the value of 

double integral from the definition. We 
evaluate the integrals by calculating 
two successive single integrals. 

We use the notation ( , )
d

c

f x y dy  to mean that 

x is held fixed and ),( yxf  is integrated 
with respect to y from cy   to dy  . 
This is called partial integration with 
respect to y. 

( ) ( , )
d

c

A x f x y dy  

Now we integrate the function A with 
respect to x from ax   to bx  , we get: 

( ) ( , )
b b d

a a c

A x dx f x y dy dx  
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This successive integration process is 
called iterated integration. 

( , ) ( , )f x y dxdy f x y dx dy  

( , ) ( , )f x y dydx f x y dy dx  

 These iterated integrals mean that we 
first integrate with respect to one 
variable (while holding the other fixed) 
and then integrating with respect to the 
other variable while holding the first 
one fixed. 

 It is traditional to omit the brackets and 
write the iterated integral simply as 

( , )f x y dxdy  

The following theorem gives a practical 
method for evaluating a double integral by 
expressing it as an iterated integral. 
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Theorem 3.1 Fubini’‛s Theorem 
If ( , )f x y  is continuous over the rectangle 

: ,R a x b c y c , then 

( , ) ( , )

( , )

d b

R c a
b d

a c

f x y dA f x y dxdy

f x y dydx
 

 
Example 3.1 
Evaluate the integrals. 

(a) 
3 2

0 1

(1 8 )xy dydx      

(b) 
2 3

1 0

(1 8 )xy dxdy  

Compare (a) and (b). 
What can you say 
about the integration? 

Prompts/Questions 
 How are double 

integrals evaluated as 
iterated integrals? 
o Which theorem do 

you use? 
 What is the inner 

integral? 
o Which variable is 

kept fixed? 
 What is the outer 

integral? 
 What integral rules & 

techniques do you 
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know? 
Solution 

(a) 
3 2

0 1

(1 8 )xy dydx  
3 2

0 1

(1 8 )xy dy dx  

= 
3  22

 1
0

4y xy dx  

= 
3

0

1 12xdx  

= 32
0

6 57x x  

(b) 
2 3

1 0

(1 8 )xy dxdy  
2 3

1 0

(1 8 )xy dx dy  

= 
2  32

 0
1

4x x y dy  

= 
2

1

3 36ydy  

= 22
1

3 18 57y y  
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Example 3.2 
Compute 

(2 )
R

y dA where R 

is a rectangle with 
vertices (0, 0), (3, 0), 
(3, 2) and (0, 2). 

Prompts/Questions 
 How do you write the 

integral as an iterated 
integral? 
o Can you sketch the 

region of integration? 
o What are the limits of 

integration 
 Does the order of 

integration matter? 

Solution 
 Sketch the region 

of integration, R: 
 Choose order of 

integration: fixed 
x (y-integration 
first, vertical 
arrow) 

 
 
 
 
 

For each fixed x on the interval [0, 3], y 
ranges from 0 up to 2 and we get the double 
iterated integral, 

(0, 0) 

(3, 2) (0, 2) 

(3, 0)  
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23 2 3 2

0 0 0 0
3

0

2 (2 ) 2 2

2 6

R

yydA y dydx y dx

dx

 

 
Example 3.3 
Evaluate 

cos
R

x xydA over the 

region R 
0 , 0 12x yp . 

Prompts/Questions 
 Can you sketch the 

region R ? 
 How do you write the 

integral as an iterated 
integral? 
o Which order of 

integration is easier? 
o What are the limits 

of integration? 
 What integration 

formulas do you use?   
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Solution 
 Sketch the region R: 
 
 
 
 
 Choose order of integration and set up the 

limits of integration: y-integration first, 
fixed x 

2 1

0 0
2 1

00

cos ( cos )

sin

R

x xydA x xy dydx

xyx dxx

p

p
 

= 

2
2

0
0

sin cos

1

x dx x
p

p

 

fixed x 0 

1 

2
p
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3.2.2 Nonrectangular Regions 
We limit our study of double integrals to 
two basic types of regions: Type I and 
Type II. 

Definition 3.2 
(a) A plane region R is said to be of 

Type I if it lies between the graphs of 
two continuous functions of x. 

1 2( , ): , ( ) ( )R x y a x b g x y g x  

(b) A plane region R is said to be of 
Type II if it lies between the graphs 
of two continuous functions of y. 

1 2( , ): ( ) ( ),R x y h y x h y c y d  

N MOHAMED NASIR
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Type I Region - integrating first with 
respect to y 

 

Type I (Vertical Strip): x fixed between  
a and b, y varies from )(1 xg  to )(2 xg . 

Type II Region - integrating first with 
respect to x 

 

Type II (Horizontal Strip): y fixed between  
c and d, x varies from )(1 yh  to )(2 yh . 
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Theorem 3.2 
(a) If R is a Type I region, then 

2

1

( )

( )

( , ) ( , )
g xb

R a g x

f x y dA f x y dydx  

(b) If R is a Type II region, then 
2

1

( )

( )

( , ) ( , )
h yd

R c h y

f x y dA f x y dxdy  

 
 

*Example 3.4a 
Evaluate  

R
dAyx )(  over the region 

R enclosed by the lines 0y , xy 2  
and 1x . 
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Solution 
 Sketch the region: set up the limits of 

integration 
 
 
 
 
 
Choose order of integration: Type I, fixed x 

  
1

0

2

0
)()(

x

R
dydxyxdAyx  

= dxxdxyxy
xy

y
 














1

0

2
1

0

2

0

2
42  

= 3
4

3
4 1

0

3 




x

x
x  

 y = 0 

 x = 1 
 y = 2x 

1 0 
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Alternatively, reversing the order of 
integration: Type II, fixed y 
 
 
 
 
 
 

  
2

0

1

2
)()(

yR
dxdyyxdAyx  

= dyxyx
x

yx















1

0

1

2

2

2  

dyyy 









1

0

2

8
5

2
1  

= 3
4

24
5

22

2

0

32






y

y

yyy  

2 

 x = 1 

 x = y/2 

1 0 
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Example 3.4b 
Evaluate 

2(2 )
R

x y dA over 

the region R in the first 
quadrant bounded by 
the axes and 2 1y x . 

Prompts/Questions 
How do write the 

integral as an iterated 
integral? 
o Can you identify 

and sketch the 
region of 
integration? 

o What are the limits 
of integration? 

Does the order of 
integration matter? 

What integral rules & 
techniques do you 
know? 
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Solution 
We know the region R, what we want is to 
determine the limits of the iterated integrals. 

Sketch the region 
R. 

Choose order of 
integration: 

Type I, fixed x 
(vertical strip, y-
integration first)  
 Determine the limits of integration: 
Recognise that for each fixed x on the 
interval [0, 1], y ranges from 0 up to 1 x  
and we get the iterated double integral, 

1 1
2 2

0 0

(2 ) (2 )
x

R

x y dA x y dydx  

111 33

0 0 0

( 1 )2 2 13 3

2
3

x
xyxy dx x x dx
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Alternatively, choosing the other order of 
integration: Type II, fixed y (horizontal strip,  
x-integration first) 
For each fixed y on the 
interval [0, 1], x ranges 
from 0 over to 21 y  and 
we get the iterated 
integral, 
 
  

2

2

11
2 2

0 0
1 1 12 2 2

000

(2 ) (2 )

1

2
3

y

R

y

x y dA x y dxdy

x y x dy y dy  

For Type I, the computation involves some 
difficult integrals. Thus, in this case 
integrating in the order dxdy (Type II) is more 
convenient. 
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Note 
 Unless the limits are constants, you cannot 

simply swap the integral and limit signs 
around. You have to draw out the entire 
region and see how it changes. 

 
Example 3.5 
Evaluate the integral by 
reversing the order of 
integration. 

1 1
2

0

xy

x

y e dydx  

Prompts/Questions 
Which part of the 

integral informs you 
about the region of 
integration? 
o Identify and sketch 

the region. 
o What are the limits 

for the reversed 
order? 

Why is it worthwhile 
to reverse the order of 
integration?    
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Solution 
Identify the region of integration R: 
Read the limits of integration: y-integration 

first 
Integral is of Type I - for each fixed x on the 
interval [0, 1], y runs from y x  up to 

1y . 
Sketch the region R: Complete the 

solution… 
 
 
 
Reverse order of integration: Type II, fixed 

y (horizontal strip, x-integration first) 
For each fixed y on the interval [0, 1], x runs 
from 0x  over to x y . We obtain, 
1 1 1

2 2

0 0 0

y
xy xy

x

y e dydx y e dxdy  
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2

2

1
1

2

0 0
0

1

0

1 1( 1)2 2

yxy
y

y

ey dy ye dyy

e e

 

There are integrals that can be evaluated only 
in one order and is impossible to do the 
integral in the other order. See example 
below. 

Example 3.6 

Evaluate 
2

4 2

0 2

y

x

e dydx . 

Prompts/Questions 
The integral is 

impossible to evaluate 
in the given order. 
Why? 

How do you reverse 
the order of 
integration? 
o Can you identify and 

sketch the region of 
integration? 

o What are the limits 
of integration 
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Solution 
In the given order, the integral cannot be 
evaluated because the integrand 2ye  has no 
antiderivative. 
Sketch the region R: Complete the 
solution… 
Given order: y-
integration first 

 

 

 
 

Reversed order: 
x-integration first 

 

 

 
 

2 2 2
224 2 2 2

00 2 0 0 0

y y
y y y

x

e dydx e dxdy xe dy  

2
2

4

0

2 1yye dy e  
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Example 3.7 
Construct TWO 
examples of double 
integrals that are readily 
evaluated by integrating 
in one order but not in 
the reverse order. 

Prompts/Questions 
How do you know 

the integral is easily 
evaluated in one 
particular order? 
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3.2.3 Double Integral as Area and 
Volume 

Definition 3.3 
(a) The area of the region R in the xy-

plane is given by 

R

A dA 

(b) If f is continuous and ( , ) 0f x y  on the 
region R, the volume of the solid 
under the surface ( , )z f x y  above the 
region R is given by 

( , )
R

V f x y dA 

 

*Example 3.6 
Find the area of the region bounded by 

xy   and 2xy   in the first quadrant. 
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Solution 
Sketch the region: 
 
 
 
 
 
 
 

Order of integration: Type I, fixed x 

Area =   dxydydx x
x

x

x
  
1

0

1

0
2

2
 

= 6
1

32

1

0

321

0

2 









xxdxxx  unit2 

1 

 y = x 
 y = x2 

1 0 
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Example 3.7 
Find the area of the region enclosed by the 
parabola 2xy   and the line 2 xy . 
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Example 3.7a 
Find the area of the region bounded by the 
graphs 2y x  and the line 2y x  . 
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Example 3.8 
Use a double integral to find the volume 
of the tetrahedron bounded by the 
coordinate planes and the plane 

yxz 244  . 
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Example 3.8a 
Find the volume of the solid lying in the 
first octant and bounded by the graphs of 

24z x  , 2x y  , x = 0, y = 0 and  
z = 0. 
 
 
 
 

Example 3.8b 
Find the volume of the solid lying in the 
first octant and bounded by the graphs of 

2 24z x y   , 22 2y x  , x = 0, y = 0 
and z = 0. 
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Example 3.9 
Find the volume of the solid bounded by 
the cylinder 422  yx  and the plane 

4 zy  and 0z . 
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Solution 

Volume, 
2

2

42

2 4

4
x

R x

V z dA y dy dx


  

      

2

2

42
2

2 4

4
2

x

x

yy dx



  


  







 

2
2

2

8 4 x dx


   

232 cos d    

sin 216
2
     

 

2
2

1

2

416 sin
2 2 2
x x x



         
     

 

 V  = 16 unit3 
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3.3 Double Integral in Polar Form 

3.3.1 Polar Coordinates System 
A polar coordinate system consist of a 
fixed point O called the origin or pole and 
a line segment starting from the pole 
called the polar axis. 
 
 
 
 
r – radial coordinate 
  polar angle 

Definition 3.3 
Polar coordinates of a point P is written as 
 ,r  where r is the distance of P from the 
pole and   is the angle measured from the 
polar axis to the line OP (radial axis). 

O 

r 

Radial axis 

 P(r, ) 

 

Polar axis 
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3.3.2 Relationship between Polar and 
Cartesian Coordinates 
 
 
 
 
 
 

cosrx   sinry  , 

222 ryx   x
ytan  

Note 
(i) Polar coordinate of a point is not unique. 
(ii)   is positive in an anticlockwise 

direction, and negative if it is taken 
clockwise. 

(iii) A point  ,r  is in the opposite 
direction of point  ,r . 

O 

r 

 

P(r, ) 

x 

 y 
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Polar Grid 
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3.3.3 Integrals in Polar Coordinates 

If R is a circular region (involves 22 yx  ), 
it is easily described using polar coordinates. 

 Divide the region into polar rectangles. 
 
 
 
 

 Find the area of typical polar rectangle: 
 
 
 
 

kA = area of large sector – area of small sector 

kkkkk rrrrrr  












 





 

22

222
 

r1 

r2 

 =  R 

O 

 =  

r 

Rk 
O 

 
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Alternatively: 

 
If the mesh is small enough, we can assume 
that, 

0 1r r r  
and with this assumption we can also assume 
that our polar slab is close enough to a 
rectangle, 

A r rq  
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Thinking of volume, we make the equation 
)sin,cos(  rrfz  , thus the Riemann 

sum can be written as: 

 
 


m

i

n

j
ji rrrfV

1 1

*** ),(   

Taking the limit we have the actual volume, 

( , ) ( , )
R R

f x y dA f r r drdq q 

A  version  of  Fubini’s  Theorem  now  says  
that the integral can be evaluated by 
iteration with respect to r and . 

Theorem 3.2 
Let R be a simple polar region whose 
boundaries are the rays    and    
and the curves )(1 rr   and )(2 rr  . If 

),( rf  is continuous on R, then 
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qq b

q a q

q q
2

1

( )

( )

( , ) ( , )
r r

R r r

f x y dA f r r drd  
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3.3.4 Finding limits of Integration 
Example 3.10  
Find the limits of integration for integrating 

),( rf  over the region R that lies inside 
the cardiod cos1 r  and outside the 
circle r = 1. 

Solution 
Step 1: Sketch R 
 

 

 

r = 1 
r = 1+ cos  

2 1 

 = /2 

 = /2 
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Step 2: the r-limits of integration 
A typical ray from the origin enters R 
where r = 1 and leaves where 

cos1 r . 

Step 3: the -limits of integration 
The rays from the origin that intersect R 
run from 2

   to 2
  . 

The integral is 

1 cos2

1
2

( , )f r r drd

p
q

p
q q 

Note 
We may, of course, integrate first with 
respect to   and then with respect to r if 
this is more convenient. 
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3.3.5 Changing Cartesian Integrals 
into Polar Integrals 

The procedure for changing Cartesian 
integral ( , )

R

f x y dA into a polar integral 

has two steps. 

Step 1: Substitute cosrx  , 
sinry   and replace dxdy by r drd  

in the Cartesian integral. 

Step 2: Supply polar limits of 
integration for the boundary of R. 

The Cartesian integral then becomes 

2

1

( )

( )

( , ) ( cos , sin )
r

R r

f r dA f r r rdrd
qb

a q

q q q q 
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Example 3.11  

Evaluate 2 2( 1)
R

x y dA where R is the 

region inside the circle 2 2 4x y . 

Solution 
We evaluate the integral in polar form. 

KNOW: 222 ryx   

Region R: 422  yx  42  r  or r = 2 

 
 
 
 
 

2 2
2 2 2

0 0

( 1) ( 1)
R

x y dA r r drd
p

q 

 = 0 

r = 2 

2 2  = 2 
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Example 3.12 

Evaluate 
R

x dA where R is the region 

bounded above by the line xy   and below 
by the circle 0222  yyx . 
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Example 3.12a 
To evaluate the integral 

2

R

r dr dq  

where R is the region in the xy-plane bounded 
by cos2r , we obtain 

2cos2cos 3
2

00 0 0
3
rr dr d d

qp q p

q q 

3
3

00

8 8 sincos sin 0
3 3 3

d
pp qq q q  

Alternatively we can set up the integral as 











drddrr  




2

2

cos2

0

32

2

cos2

0

2
3

 

9
32

3
sinsin3

8cos3
8

2

2

32

2

3 




















 d  

Both of these answers cannot be correct. 
Which procedure is correct and why?
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Area between the lines ,q a q b  and the 
curves ( ) , ( )r f r gq q . 

 

 
( )

( )

f

R g

dA r dr d
qb

a q

q 
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Area between the circles ,r a r b  and the 
curves ( ) , ( )r rq q j . 
 

 

 
( )

( )

rb

R a r

dA r d dr
j

q  
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Example 3.13 

Use polar double integral to find the area 
enclosed by the three-petal rose 3sinr . 

Solution 
Sketch the region: 

KNOW: Area, A =  
R

dA 

The graph is symmetry, so we will calculate 
the area of the petal in the first quadrant and 
multiply by 3. 

A =    
3

0

3sin

0
33

1

 
drdrdA

R
 

 

r = sin 3 
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Example 3.14 

Find the area bounded by the polar axis, part of 
the spiral 2r  and between the graphs 

2r  and 3r . 

Solution 
 Sketch the region of integration. Complete 
the  solution… 

 
 
 
 
 Determine limits of integration: choose 

order of integration 
Choose  -integration first. For each fixed r 
between 2 and 3,   varies from 0q  over 
to 2

rq . 

 Set up the integral and evaluate: 

1

23

2 0

 Area 2
r

R

dA rd drq  
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Alternatively, r-integration first will give us 
the integral, 

2 3 23 1

0 2 2 3 2

Area 2rdrd rdrd
q

q q  
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Example 3.15 (Example 3.9 revisited) 

Find the volume of the solid bounded by 
the cylinder 422  yx  and the plane 

4 zy  and 0z . 
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Example 3.15a 
Find the volume of the solid under the 
surface 

22 yxez   and above the region 

40,31   r . 

 
 
 
 
Example 3.15b 
Find the volume of the solid bounded by 
the graphs 2 24z x y    and 

2 2z x y  . 
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3.4 Triple Integral 
Focus of Attention 
 Definition as a limit of Riemann sum – 

interpretation as volume of solid 
 How are triple integrals evaluated as 

iterated integrals? 
 Does the order of integration matter? 
 How are the limits of integration 

determined? 
 How is triple integral use to find volume? 
 How do you transform a triple integral in 

rectangular coordinates into a triple 
integral in cylindrical coordinates or 
spherical coordinates? 

 What do you look for when considering 
using cylindrical coordinates or spherical 
coordinates? 
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Recall that 

 A single integral  dxxf )(  is evaluated 
over a closed interval on the x-axis. 

 A double integral ( , )
R

f x y dA  is 

evaluated over a closed bounded region in 
the plane. 

and in essentially the same way 

 A triple integral   
G

dVzyxf ),,(  is 

evaluated over a closed, bounded solid 
region in 3. 
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Definition 3.4 
If  f  is a function defined over a closed, 
bounded solid region G, then the triple 
integral of  f  over G is defined as 

  



n

k
kkkknG

VzyxfdVzyxf
1

*** ),,(lim),,(   

 

The properties of triple integrals are 
analogous to those of double integrals. 

 Constant Multiple Rule 

 Sum Rule 

 Dominance Rule 

 Subdivision/Additivity Rule 
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3.4.1 Iterated Integration 
Just as for double integrals, the practical 
method for evaluating triple integrals is to 
expressed them as iterated integrals as in 
the following theorem: 

Theorem 3.3 
If ),,( zyxf  is continuous over a rectangle 
solid G: lzkdycbxa  ,, , 
then the triple integral may be evaluated by 
the iterated integral 

     
l

k

d

c

b

aG
dxdydzzyxfdVzyxf ),,(),,(  

The iterated integration can be performed 
in any order (with appropriate adjustments) 
to the limits of integration: 

dzdydx  dydzdx  
dzdxdy  dxdzdy  
dxdydz  dydxdz  
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Example 3.15 

Evaluate   
G

x dVyez2 , over the 

rectangular box G defined by 

11,21,10  zyx  

Solution 

We shall evaluate the integral in the order 
dzdydx . 

1 2 1
2 2

1 1 0

x x

G

z ye dV z ye dxdydz


       

= 
1 2 1 2

12 2
0

1 1 1 1

( 1)xz y e dydz e z y dydz
 

         

= dzyze 



1

1

2

1
22 ]2[)1(  

= 1)1(2
3 1

1

2  


edzze  
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3.4.2. Integral Over General Regions 
We restrict our attention to continuous 
functions  f  and to certain simple types of 
regions. 
3 types of region: 
Type I – integrating over simple xy-solid 
Type II – integrating over simple xz-solid 
Type III – integrating over simple yz-solid 

Definition 3.5 
A solid region G is said to be of Type 1 if 
it lies between the graphs of two 
continuous functions of x and y, 

 ),(),(,,:),,( 21 yxkzyxkRyxzyxG   

where R is the projection of G onto the  
xy-plane, then 

2

1

( , )

( , )

( , , ) ( , , )
k x y

G k x y
R

f x y z dV f x y z dz dA
 

  
  





    
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Type I Regions 
2

1

( , )

( , )

( , , ) ( , , )
k x y

G k x y
R

f x y z dV f x y z dz dA
 

  
  





    

Type II Regions 
2

1

( , )

( , )

( , , ) ( , , )
g x z

G g x z
R

f x y z dV f x y z dy dA
 

  
  





    

Type III Regions 
2

1

( , )

( , )

( , , ) ( , , )
h y z

G h y z
R

f x y z dV f x y z dx dA
 

  
  





    

Example 3.16 
Let G be the wedge in the first octant cut 
from the cylindrical solid 122  zy  by 
the planes xy   and 0x . Evaluate 

  
G

dVz  
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Solution 
 Sketch the solid: choose Type I 
 
 
 
 
 

upper bounding surface: 122  zy  

lower bounding surface: xy-plane 

 The z-limits of integration: Draw a line 
L parallel to z-axis passing through 
solid region. 
As z increases, L enters G at z = 0 and 
leaves at 21 yz   

 
21

0

y

G R

z dV z dz dA


      

 y 

 x 

 y = x 

1 

1 

 x = 0 

 y2 + z2 = 1 

 y = x 
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 The x-limits of integration: Draw a line 
M parallel to x-axis passing through 
plane region R. 
As x increases, M enters R at x = 0 and 
leaves at x = y. 

 The y-limits of integration: Choose  
y-limits that include all lines parallel to 
the x-axis. 

The integral is 

    



1

0 0

1

0

2y y

G
dydxdzzdVz  

=    
 1

0 0

2
1

0 0

1

0

2
)1(2

1
2

2
yy y

dydxydydxz  

=  
1

0 0
2)1( dyxy

y
 

= 8
1)(2

1 1

0

3  dyyy  
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Alternatively, we evaluate the integral by 
integrating first with respect to x (Type III). 
The solid is bounded in the back by the 
plane x = 0 and in the front by the plane 

xy  . 

 
0

y

G R

z dV z dx dA      

 
 
 
 
 

21 1

0 0 0

yz

G

z dV z dxdy dz


       

 y2 + z2 =1 

 z 

 y 

1 
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Example 3.17 
The volume of a closed bounded region G 
in space is given by 

21 0

0 1 0

y

G

dV dz dy dx


       

Rewrite the integral as an equivalent 
iterated integral in the order 

(a) dxdzdy   (b) dzdydx  
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Example 3.18 
Find the volume of the region in the first 
octant bounded by the coordinate planes, 
the plane 2 zy  and the cylinder 

24 yx  . 
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Example 3.19 
Find the volume of the region bounded 
above by 224 yxz  , below by 0z  
and laterally by 122  yx . 

Solution 
2 2 2

2

1 41

0 0 0

11
2 2

0 0

4

4 4

x x y

G

x

V dV dzdydx

x y dydx

 

1
2 3

2 2 2

0

( 1 )4 4 1 1 3
xx x x dx

 

2
4

2 2 2

0

cos4 4cos sin cos 3

7
2

d

p

qq q q q q
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3.4.3 Cylindrical Coordinates 

 Generalization of polar coordinates in 
3 

 We convert a triple integral from 
rectangular to cylindrical coordinates by 
writing 

cosrx  , sinry  , z = z 

The element of integration, 

dzddrrdV   

The function ),,( zyxf  is transform to 

),sin,cos(),,( zrrfzyxf   

 Cylindrical coordinates are convenient 
for representing cylindrical surfaces and 
surfaces for which the z-axis is the axis 
of symmetry. 
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The cylindrical coordinate system 
 
 
 
 
 
 
 
 
 

 

or   (x, y) 

z 

(x, y, z) 
(r, , z) 

(r, ) 
x 

 y 

 r 
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Theorem 3.4 
Let G be a solid with upper surface 

),(2 rgz   and lower surface ),(1 rgz   
and let R be the projection of the solid on 
the xy-plane expressed in polar coordinates. 
Then if ),,( zrf   is continuous on R, we 
have 

     
R

rg

rgG
ddrdzrzrfdVzrf

),(

),(

2

1

),,(),,(



  
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Example 3.20 
Use cylindrical coordinates to evaluate 

2 2 2

2

3 9 9
2

3 09

x x y

x

x dz dy dx
  

  

    

Solution 
2 2 2

2

2

3 9 9
2 2

3 09

2 3 9
2 2

0 0 0

cos

x x y

Gx

r

x dzdydx x dV

r rdzdrd
p

q q

 

 

22 3 93 2
0

0 0

cos
r

r z drd
p

q q  

 2
2

0

243 cos
4

d
p

q q
 

 

2

0

243 1 cos2 243
4 2 4

d
p

q q p  
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Finding limits in cylindrical 
coordinates 

Example 3.20a 
Find the limits of integration in cylindrical 
coordinates for integrating a function 

),,( zrf   over the region G bounded 
below by the plane 0z , laterally by the 
circular cylinder yyx 222   and above 
by the paraboloid 22 yxz  . 
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Example 3.21 (Example 3.19 revisited) 
Find the volume of the region bounded 
above by 224 yxz  , below by 0z  
and laterally by 122  yx . 
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Example 3.22 
Find the volume of solid in the first octant 
that is bounded by the cylinder 

yyx 222  , by the cone 22 yxz   
and the xy-plane. 
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3.4.4 Spherical Coordinates 

 Useful when you have spherical, or ice-
cream cone like surfaces. 

 Locate points in space with angles and a 
distance 

Definition 3.6 
Spherical coordinates represent a point P in 
space by ordered triples ),,(   in which 

1.  is the distance from P to the origin 

2.  is the angle OP  makes with the 
positive z-axis (  0 ) 

3.  is the angle from cylindrical 
coordinates. 
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The spherical coordinate system 

 

 

 

 

 

 

 

Since  sinr , 

 cossincos  rx  

 sinsinsin  ry  

and  cosz ,   2222  zyx  

 y 

 x 

z =  cos   
 

z 

P(, , ) 

x 

 y 

 
r 
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2   =  2 
r  =  sin() 
z   =  cos() 
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 The function ),,( zyxf  is transform to 

)cos,sinsin,cossin(
),,(

f
zyxf 

 

 The element of integration, 

 ddddV sin2  

 Triple integrals in spherical coordinates 
are then evaluated as iterated integrals. 
The integral is 

 dddfdVf
G G

sin),,(),,( 2       
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 28 
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Example 3.23 
Use spherical coordinates to evaluate 

  









2

2

4

4

4

0

2222
2

2

22x

x

yx
dxdydzzyxz  

Solution 
Sketch the region G of integration. 

 From the z-limits of integration: 
The upper surface of G is the hemisphere 

224 yxz   and the lower surface 
is the xy-plane 0z . 

 From the x- and y-limits of integration: 
The projection of the solid G on the xy-
plane is the region enclosed by the circle 

422  yx . 
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  









2

2

4

4

4

0

2222
2

2

22x

x

yx
dxdydzzyxz  

= dVzyxz
G

2222     

=   
 


2

0

2

0

2

0

25 sincos ddd  

=  
 


2

0

2

0

2

0

6
2

6
sincos dd  

 x2 + y2 = 4 

224 yxz   2 

 x2 + y2 = 4 

2 2 

 y 

 x 
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=  
 


2

0

2

0

2 sincos
3

32 dd  

=  
 

2

0

2

0

3

3
cos

3
32 d  

= 


9
64

3
32 2

0
 d  
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Example 3.24 
Let G be the region bounded below by the 
cone 22 yxz   and above by the plane 

1z . Set up the triple integrals in spherical 
coordinates that give the volume of G using 
the following orders of integration. 
(a)  ddd  (b)  ddd  
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Example 3.24a 
Let G be the region bounded below by the 
plane 0z , above by the sphere 

4222  zyx  and on the sides by the 
cylinder 122  yx . Set up the triple 
integrals in spherical coordinates that give the 
volume of G. 
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Example 3.25 
Find  the  volume  of  the  “ice  cream  cone”  G cut 
from the solid sphere 1  by the cone 

3
  . 
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Summary 
Coordinate Conversion Formulas 
Cylindrical 

to 
Rectangular 

Spherical to 
Rectangular 

Spherical to 
Cylindrical 

cosrx   
sinry   

z = z 

 cossinx  
 sinsiny  

 cosz  

 sinr  
 cosz  

   
Corresponding volume elements 





ddd

ddrrdz
dxdydzdV

sin2



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3.5 Moments and Centre of Mass 

3.5.1 Notation and Terminology 
Lamina - a solid object that is sufficiently 
“flat”  to  be  regarded  as  two-dimensional. 
Density: mass per unit area, ),( yx  

Mass: quantity of matter in a body, m 
Moment of mass: tendency of mass to 
produce a rotation about a point, line or plane 

Positive moment – clockwise rotation 
Negative moment – counterclockwise rotation 

Center of Gravity/Center of Mass: 
a point where a system behaves as if all its 
mass is concentrated there (balance point). 
Centroid: center of mass of a 
homogeneous body 
Moment of inertia: tendency to resist a 
change in the rotational motion about an 
axis. 
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Definition 3.6 
If  is a continuous density function on the 
lamina corresponding to a plane region R, 
then 

 Mass,  
R

dAyxm ),(  

 Moments of mass about the x- and y-
axes, 

 
R

x dAyxyM ),(  

 
R

y dAyxxM ),(  

 Centre of mass 

),( yx  = 







m

M
m

M xy ,  

 If the density  is constant, the point 
),( yx  is called the centroid of the 

region. 
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Example 3.26 

A lamina of density 2),( xyx   occupies 
a region R bounded by the parabola 

22 xy   and the line xy  . Find 

(a) mass 
(b) centre of mass 

of the lamina. 

Solution 
 sketch the region R 
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(a) mass of lamina, 

 
R

dAyxm ),(  = dxdyx
x

x
 


1

2

2
2

2

 

= 
2

1
22

2

x

x
x y dx


   

m  = 



1

2

342 )2( dxxxx  = 
20
63 

(b) centre of mass, ),( yx  

KNOW:   m
M

x y ,    m
My x  

 
R

x dAyxyM ),(  

= 
21 2

2

2

x

x

y x dy dx



   = 

2
1

22
2

2

2

x

x

yx dx







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xM   = 



1

2

246 )45(
2
1 dxxxx  = 

7
9  

 

 
R

y dAyxxM ),(  

= dxdyx
x

x
 


1

2

2
3

2

 = dxyx x
x




1

2

23 2
 

yM   = 



1

2

453 )2( dxxxx  = 
5

18  

From (a) we found m = 
20
63, so the centre 

of mass is ),( yx  where 

14.1
7
8

2063
518




 m
M

x y  

41.0
49
20

2063
79




 m
My x  
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In an analogous way, we can use the triple 
integral to find mass and the center of 
mass of a solid in 3. The density 

),,( zyx  at a point in the solid now refers 
to mass per unit volume. 

 Mass   
G

dVzyxm ),,(  

 Moments    
G

yz dVzyxxM ),,(  

   
G

xz dVzyxyM ),,(  

   
G

xy dVzyxzM ),,(  

 Centre of mass 

 ),,( zyx  = 







m

M
m

M
m

M xyxzyz ,,  

 If the density  is constant, the point 
),,( zyx  is called the centroid. 
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Example 3.27 
Find the centroid of a solid of constant 
density   bounded below by the disk 

422  yx  in the plane 0z  and above 
by the paraboloid 224 yxz  . 

Solution 
 
 
 
 
 
 
 
By symmetry, 0 yx . So we only 
need to find z . 

m
M

z xy  

 c.m 

 x2 + y2 = 4 

224 yxz   2 

 x2 + y2 = 4 

2 2 

 y 

 x 
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  
G

xy dVzyxzM ),,(  

=   


R

yx
dxdydzz

224

0
  

= dxdyz
yx

R

224

0

2

2



    

=   
R

dxdyyx 222 )4(
2
  

=   


 2

0

2

0

22 )4(
2

ddrrr  

= dxr 
 2

0

2

0

32 )4(
6
1

2  

= 

 2

03
16 d  

xyM    =    3
32  
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A similar calculation gives 

  
G

dVzyxm ),,(  

=   


R

yx
dxdydz

224

0
    =   8 

Therefore 
3
4

8
332





m
M

z xy . 

Thus the centroid is ),,( zyx  = (0, 0, 43). 
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Example 3.28 
A solid is the tetrahedron bounded by the 
coordinate planes and the plane 

2 zyx . If the density 
xzyx 2),,(  , find the centre of mass. 
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3.5.3 Moments of Inertia 
 Also called the second moments 

Definition 3.7 
The moments of inertia of a lamina of 
density  covering the planar region R 
about the x-, y-, and z-axis are given by 

 
R

x dAyxyI ),(2  

 
R

y dAyxxI ),(2  

  
R

z dAyxyxI ),()( 22   

 
 
 
 
 
 

z 

 x 

 y 

R 
 (x, y) 
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The concept of moments of inertia 
generalise easily to solid regions. 
Suppose the solid occupies a region R and 
that the density at each point (x, y, z) in R 
is given by ),,( zyx . The moments of 
inertia of the solid about the x-, y-, and z-
axis are given by 

   
G

x dVzyxzyI ),,()( 22   

   
G

y dVzyxzxI ),,()( 22   

   
G

z dVzyxyxI ),,()( 22   

 
 
 
 
 
 

 x 

 z 

z 

 x 

 y 

dV 

 y 
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Example 3.29 

A lamina of density yxyx 2),(   
occupies the region R in the plane that is 
bounded by the parabola 2xy   and the 
lines 2x  and 1y . Find the moments 
of inertia of the lamina about the x-axis 
and the y-axis. 
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Example 3.30 
Find the moment of inertia of  the  “ice  
cream  cone”  G cut from the solid sphere 

1  by the cone 
3
   about the z-axis. 

(Take  = 1) 
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Example 3.31 
Find the moment of inertia of a solid 
hemisphere of radius 2 with respect to its 
axis of symmetry, if the density is 
proportional to the distance from the axis 
of symmetry. 
  

 


	3.1_MultipleIntegral.pdf
	3.3_PolarIntegral
	3.4_TripleIntegral09
	3.4SphericalCoordinates09

