L ot Afhese P L

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
UNIVERSITI TEKNOLOGI MALAYSIA

SSH 1033 MATHEMATICAL METHODS II TUTORIAL 1
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Write the first five terms of each of the following sequences.
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Write the first five terms of each of the sequence. Determine whether the sequence con-
verges, and if so find the limit.
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Express the sequence in the notation {an} . Determine whether the sequence converges,
and if so find its limit.
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4. Let {a.} be the sequence for which a; = v6 and a1 = V6 Fa, forn > 1.

(a) Find the first 6 terms of the sequence.

(b) It can be shown that the sequence {a,} converges. Assuming this to be so, find its
limit .
[Hint: lim @, = lm @n41))
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5. The Fibonacci sequence is defined by @42 = @ny1 +a, for n > 1, where a; = 1, a0 =1.

(2) Find the first 8 terms of the sequence.

(b) Find lim 30+l ,ssuming that this limit exists.
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6. Consider the sequence {a,},_; where -
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(a) Write out the first five terms of the sequence.

(b) Find the limit of the sequence.
[Hint: Sum up the terms in the formula for an.]
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(a) Write the 1st, 5th, 10th, 100th, 1000th, 10,000th and 100,000th terms of the sequence
in decimal form. Make a guess as to the limit of this sequence as n — oo.

'Using the definition of limit to verify that the guess in (a) is actually correct.

7. A sequence has its nth term given by a, =
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8. Find the least positive integer N such that
(a) e=0.01, (b) €=0.001, (c) e€=10.0001.

If lim a, = A and lim b, = B, prove that lim (a,+b,)= A+ B.
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@ If lim a, = A and lim b, = B, prove that lim anb, = AB.
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i1t Prove that if lim a, exists, it must be unique.
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{a} the sequence {—} converges to 0.
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(b) the sequence converges to 1.
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(c) the sequence {3: i 4} converges to %
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(d) the sequence { } converges to —%.
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Evaluate each of the following, using theorems of limits.
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Prove that the sequence with nth term », = It 2’
(a) is monotonic increasing,

(b) is bounded above,

(c) is bounded below,

(d) is bounded,

(e) has a limit.
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Prove that the sequence with nth term u, = 1
n
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(a) is monotonic decreasing,
(b) is bounded below,

(c) is bounded above,

(d) has a limit.

Determine whether the given sequence {a,} is monotone by examining @, — @n41-

classify it as increasing, decreasing, nonincreasing, or nondecreasing.
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Determine whether the given sequence {a,} is monotone by examining @n41 [an.

classify it as increasing, decreasing, nonincreasing, or nondecreasing.
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Use differentiation to show the sequenice {an} is strictly monotone and classify it as in-
creasing or decreasing.
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Find the limit (if it exists) of the sequence.
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Show that
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is a decreasing sequence.
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Show that is an increasing sequence.
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Answers for Tutorial 1
1.(a) 1/5,3/8, /11, 7/14,9/17 (b) 2,0.2/9,0.2/25 (c) %, -1/8, 1/48, -1/384, 1/3840
(d) 1/2.3/4. /8. 15/16.31/32 (e) L, -1/2. /6. -1/24. 1/120

(D cosx/ (x> +1), cos2x/(x*>+4). cos3x/ (x> +9), cosdx/ (x> + 16),
cos 5x / (X2 + 23)

(1. 2x/3°,4% /15,817, 16x* 1 9°
() x, x>/3, x*715, x' /105, -x° /945
2.(a) 1/2.2/3.3/4.4/5.5/6 ; 1 (by 1,-1/2, /6. -1/24, 1/120 : 0
(©)1/2,+273,Y3/4 25, 45/65 0 (d) 3,3/2,1009,15/16,21/25 ; 172
() n/4,7%/16,2°168,21128.2°/512: 0 (D0, (n2)/2,(n3)/3.(n4Y4,(n5)/5:0
) 0. In(1/2). In(1/3). In(1/4), In(1/5) ; -0 (h) -1, 0, 1/27, 1/16,243/3125 : &2
3.(@a,= (-‘I)“(Zn—l)/(3n+2); diverges (b) a,= (1 + (D™ )2 ; diverges
©an={(apW(n+3)] (1 + (-1 ) 2 ; diverges (d) (n-1)/ n; converges; 0
(&) a,=3(1/2""); converges; 0 (Ha,= 1/n - 1/(n+1); converges ; 0
@) an= Jn+1-Jn+2 ;converges; 0
4. (a) 2.4495, 2.9068 , 2.9844, 2.9974, 2.9996, 2.9999,2.9999 (b} 3
5.() 1,1,2,3,5,8,13,21 () (1+ J5)2
6. (a) 1, 3/4, 2/3,5/8,3/5 (b) 172
7. (a) 2/;), 14/25, 29/45, 299/405, 2999/4005, 29999/40005, 299999/400005 ; 3/4
8. (a) 501 (b) 5001 (c) 50001 13(a)3/5()0 (c) 1 (d)3/2 (c) 16/81 (f)2/3 (g) 112
16?21;; monotonic {a) dec (b) inc (c) inc (d)dec (e) dec (f) dec
17. (a) 1nc (b) non inc {¢) dec (d) and (f) non monotonic (¢) non inc
18. (a), (b), and (£} are increasing (c), (d), and (¢} decreasing

19. (a) 0 (b) does not exist. The limit ts



