1 Introduction

1.1 What is a Dynamical System?

Dynamical systems occur in many branches of science and engineering, and are essentially
processes which evolve in time. Examples include the motion of the stars in the heavens,
the weather, variations in the stock market, some chemical reactions, population growth
and decline, and the motion of a simple pendulum etc. In mathematical terms, the study
of dynamical systems involves developing mathematical descriptions of such processes and

their evolution in time. Often, a mathematical model of such a process takes the form of
either a differential equation such as

&= f(z(t)), 2(0)=o oy

(where % denotes the derivative dz /dt) or a difference equation, e.g.

Tn1 = f(z,), o specified. LS (1.2)

As we shall see, differential equations’ lead to continuous time dynamical systems in
which time progresses smoothly, while difference equations’give rise to discrete time dy-

-namical systems in which time progresses in discrete packets. Only one-dimensional situ-
ations will be covered in this course.

To get a flavour of what this course is about, we consider the simple one-dimensional non-
litiear differential equation

y .
' Z =sinz, T=1x9att=0. (1.3)

This can be solved analytically by separation of variables to givé

CSc g + cot zg
cscr 4+ cotx

=1

(1.4)

Although this result is exact, it is a bit difficult to interpret. Suppose, for example, we want
to know what happens as ¢ — co when xo = 7/4, or, more generally, what is the behaviour
of z(t) as t — oo for an arbitrary zo? These questions can't easily be answered from (1.4).
Now suppose that we think of ¢ as time, z as the position of an imaginary particle moving
along the real line, with & as its velocity. Then (1.3) represents a vector field on the line
which can be plotted as & versus z, with arrows representing the direction of the velocity.
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vector at each x (so the arrows point to the right when & > 0 and to the left when

We can think of this vector-field as representing a.flow; whose velocity varies according to
(1.3). So the flow is to the right when £ > 0 and to the left when © < 0. When % = 0,

there is:no flow: such points are called fixed points. Solid black dots represent stable fixed
points (often called attractors

s or sinks because the flow is towards them) and open circles
represent gns_t;ab_lq.f{iz(ed points (also known as repellers or sources). Using this picture,
consider a particle starting at zq = 7 /4. Tt will move to the ﬁght, eventually approaching the
stable fixed point 7 from the left. We can use this approach for any choice of 4. Although
the picture can’t tell us some quantitative things (like the maximum speed), it can be used
to get lots of qualitative information about the flow’s general behaviour.

The following definitio

Similar ideas can be used to study dynamical systems in which time is discrete. For example,
the rule

Tpt1 = COS T,

is an example of a one-dimensional map or difference equation iteration (start from
some number z, on your calculator and repeatedly press the cosine button). The sequence
of iterates o, z1, Tz, . . . is called the orbit starting from 2. As well as being useful tools for

analysing differential equations, maps are interesting in their own right as they are capable of
much wilder behaviour than differential equations as points ‘hop’ along their orbits instead

of flowing continuously. /\

X

0 x;\_/exl

Interesting qu%tions can be asked re for example the behaviour of the iterates as t — co.

On this course, we will look at the mathematical background behind such analyses of dy-
namical systems.

1.2 Mathematical Definition

From a mathematical viewpoint, a dynamical system consists of two parts:
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a state vectgr which describes the current (initial) state of the system (in one dimen-
sion, thls is simply a scalar), Lx T

e a iv‘u‘nctlo_;;l5 which maps the state at one instant of time to the state at a later. time.
The following definition expresses this more precisely.

Definition 1.1 Let X be any space and let T CR. Any function ¢ : X x T — X that has
the two properties

(i) Y(z,0) =z (:\\Ai\{‘o\. J"M)

(%) Y((z,t),s) =¢(z,t+5) (the semigroup property)
is called a dynamical system on X.
Remarks

1. Space X might be any normed vector space such as R™, or any metric space (see
Chapter 2). In this course, we will concentrate on one—dnnensmnal dynarmca.l systems

P TG ..r,...f.." F'w

which means that the space X is usually R R. T

nh‘g‘h__;”__,

2. We can regard ¢(x t) as the state at QM of the system that initially was at state .
The semigroup property then has ‘the following interpretation: let the system evolve
from its initial state = to state v(z,t) at time £, and then allow it to evolve from this
state for a further time s. The system will then arrive at precisely the state P(z,t+s)
that it would have reached through a single-stage evolution of t + s from state z.

3. There are two main possibilities for T Firstly, if T =R+ (the set of non-nega.tlve real”
‘numbers), we are dealing with continuous time so we have a continuous. dynamical
system (CDS) or flow,. Similarly, if T = N (the set of non-negative integers), we are
dealing with discrete time or a discrete dynarmcal system (DDS) (see below). Note

RS

that in some examples, we may also have, I=R (CDS) orT =7 (DDSQ

For a DDS, we suppose that the evolution through time of a particular system occurs in
discrete steps, e.g. in steps of size At. If we write Y(z,n) to denote the value at time
t = nAt of the system that took the value = at ¢t = 0, then, for a one-dimensional DDS, ¥
is defined on R x N Any such function 1,b satisfying

n0 D QQU) X v~0bw\ wmahial
(1) Y(z, )?-_-a: Vr e R covelinown
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(i) P((z,n),m) = Y(z,ntm) VzecR,Vn,me N
[ o A S ST

defines a discrete dynamical system.

CDS Example
As a simple illustration of how a CDS arises from a differential equation, consider the initial
value problem

J(t) = ayt), y(0)=z. (1.5)

It is straightforward to show that the solution to (1.5) is y(f) = ze® . Now let ¢ : RxR — R
be defined by
Y(z,t) =re®, z,t€R,

that is, 9(x, %) denotes the value at time ¢ of the solution of the IVP (1.5). Clearly

() $(2,0) == s

(ll) ’Q[)(’!/)(IL', t)) 3) = ¢(£ic:lta S) =_$ﬂe::€@= :Ee“(“'s) = 1[)(:12,t + S)
N T‘ o O ; :

s0 9 : R x R — R is a one-dimensional CDS (by Definition 1.1).

DDS Example , ‘
As an example of how a one-dimensional DDS might be generated, consider the function
(or map) f : R — R which satisfies the first-order difference equation (or iteration)

ZTn+1 = f(x), o specified .
For n € N, we deﬁﬁe the nth iterate or n—fold composition of f to be
ff=fofof...of (n terms).
Note that ffdoes not mean “f to the power n” here, but #iapplicationsiof fr
@) =7(f@), F)=72)=Ff{{@), et

f we also define f° by f°(z) =2 Vz €R, it then follows that

(i) f%z)=z VzeR
(i) f*(f™(z))=f"*m(z) VreR, VYn,meN.
Writing
Y(z,n) = fY(z) Vz e R,Vn €N

we see that ¢(z,n) satisfies the properties of a discrete dynamical system.
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We mention here another important way of generating a DDS. Suppose that ¢ : Rx Rt — R
is a CDS. If we restrict the times to discrete values, say t = 0, At, 2At, ..., and define

Y(z,n) = ¢(z,nAt), then we obtain a DDS % :R x N — R. This method of “strobing ” a

CDS is a very useful technique for analysing its behaviour, and is essentially due to Henri
Poincaré.

1.3 Main Objectives

When studying a given CDS or DDS

Y : X XT — X, there are usually several questions
that we would like to answer:

/" 1. Given an initial value T, can we determine the asymptotic (long-term) behaviout’of
Y(z,t) ast — 00 ?

\/ 2. Can we identify particular initial values“which

give rise to the same asymptotic b&
haviour?:

\/3. Can we say anything about the stability of the system? That is, if z is “close to”y
In X, is it true that 4(z, 1) is “close to” Yy, 1PVt € T?
In many situations, a dynamical system’may also depend on a. parameter, that is, the system

takes the form Yyt X X T — X where JTRS lergpresents the parameter. In such cases, the
following questions would also be of interest:

\/ 4. Can we determine what happens to the behaviour of the

dynamical system as the
parameter varies? :

\/ 9. Can we identify the values of the parameter at which

changes in the behaviour of the
system occur (bifurcation values)?

In some special cases, it is possible to find an explicit formula for the dynamical system (e.g.
~in the example in §1.2 where Ya(z,t) = 1% with parameter a). This can then be used to
answer questions 1 - 5 . fUnfortung ~in: - JNO> . .
qug above. MUnfortunatel; i most;cases no:such-formula-can-be-found
and analysing the dynamical system becomes more complicated.

1.4 Some Motivating Examples
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parameters such as the number of predators, severity of climate, availability of food\a%
model may take the form of a differential equation or a difference equation dependin'g'"\

whether the population is assumed to change continuously or discretely. We can attempt f‘t;,x
use the model to answer questions such as: ‘

' ‘

1. Does the population — 0 as t — oo (extinction)?

2. Does the population become arbitrarily large as t — co (eventual overcrowding ) ?

3. Does the population fluctuate periodically or even randomly?

1. (a) Single species — continuous models.

(i) Linear case. Let P(t) represent the size of the population at time ¢ > 0, with

wnitial population P(0) = Py. A simple model is given by the linear differential
equation :

(fi—lt) =uP, t>0
where y is the (constant) growth rate. Solving this equation we obtain
P@t)=Pe*, t>0
from which we can deduce that:
E>0=P@t) >0 ast— oo

L<0=Pl) -0 " ast— oo
p=0= P(t)=P Vt>0.

(overcrowding)
(extinction)

Note that‘z"n the first two cases, the long-term behaviour of P(t) is independent
of Po. Also, for pu < 0, extinction will occur in finite time since fractional values
of P(t) are not allowed.

(ii) Nonlinear case. A more realistic model is given by

’ dP

g }__'L'?L } —&-:G(P)P, t>0; P(0)= PR,
i with a variable growth rate G depending on the population P. For example, the
- equation of limited growth is
G s ey
-> —_— -— = iti

M N e T 7 P(u—=AP), P(0)=Pp, (14, A positive constants).
A A AL .

If we write x = AP/y then this reduces to

SR LN - d
,_;\_. . ._;_ (M X_;_(’(__}L E:;i-:pa:(l——x), :L‘(O)=IL‘()
"

o R M')&(\“M) o
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3 which has solution x(t) = z9e™ /(1 — 74+ Toett). ut
B Thus, - \ =Ko MR

\ \
Zo>1 = z(t) — 1 from above_as t — oo o
\ 4} =A,

-‘-‘ L]

O<:ro<1’ == z(t) — 1 from below as t — 0o
= z(t) =1Vt >0.

At
oﬂ ‘

Ty = 1
(b) “Single species — discrete models.
(i) Linear case’ Let P, represent the population after n generations with the initial

populatzon given by Py. A simple discrete model is the linear difference equation

Por=pPy (u>0)

which has -.solutioﬁ Pp = Pyp™.

Thus:
p>1 = P, > 00 as n— 00,
O<p<l = P,—0asn— oo,
u?.l “=>Pn=P0\7ln- -

(ii) Nonlinear case: A slightly more realistic discrete model is the quadratic model

P,y = P,(u— AP,), P, specified.

10g9ishC MapP

By setting Tn = AP, /p we reduce this to
‘ E fois o

[ Tppt = pTn(l —zn) = fulz

- e

where zo is specified. FEquation (1.6) is known as the logistic equation and

Ju(@) = pz(l — ) is called the logistic function.



7


