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What	is	a	Dynamical	System?	
Dynamical	systems	occur	in	many	branches	of	science	and	engineering,	and	
are	essentially	processes	which	evolve	in	time.		Examples	include	the	
motion	of	the	stars,	the	weather,	variations	in	the	stock	market,	some	
chemical	reactions,	population	growth	and	decline,	and	the	motion	of	a	
simple	pendulum	etc.		In	mathematical	terms,	the	study	of	dynamical	
systems	involves	developing	mathematical	descriptions	of	such	processes	
and	their	evolution	in	time.		Often,	a	mathematical	model	of	such	process	
takes	the	form	of	either	differential	equation	such	as	

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥 𝑡 ,   𝑥 0 = 𝑥!	

or	a	difference	equation,	e.g	
𝑥!!! = 𝑓(𝑥!),						𝑥!	specified.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

Chapter	1:	Phase	Portraits	with	Emphasis	on	Fixed	points.	
	
1.1 Stability	of	Fixed	Points	

Give	a	system	of	differential	equations	
𝐱 = 𝐅(𝐱)	

has	a	continuous	partial	derivatives	of	the	components	of	𝐅,	so	the	
solutions	exist	and	unique.		Let	𝜙(𝑡; 𝐱!)	be	the	flow	(trajectory);	that	is	

!
!"
𝜙 𝑡; 𝐱! = 𝐅(𝜙(𝑡; 𝐱!))		and	

𝜙 0; 𝐱! = 𝐱!	
	
Definition:	A	point	𝐱∗	is	called	a	fixed	point,	provided	that	𝐅 𝐱∗ = 𝟎.	
The	solution	starting	at	a	fixed	point	has	zero	velocity,	so	it	stays	there	
and	𝜙 𝑡; 𝐱∗ = 𝐱∗	for	all	t.	
	
Definition:	For	each	𝐱𝟎 ∈ ℝ!,	we	define	the	orbit	𝛾(𝐱𝟎)	through	𝐱𝟎	by	

𝛾 𝐱𝟎 = 𝜙 𝑡; 𝐱! |t ∈ ℝ .	
Similarly,		

𝛾! 𝐱𝟎 = 𝜙 𝑡; 𝐱! |t ≥ 0 ,					𝛾! 𝐱𝟎 = 𝜙 𝑡; 𝐱! |t ≤ 0 	
Are	the	positive	and	negative	semi-orbits	through	𝐱𝟎.	
	
Definition:	A	point	q	is	an	𝜔-limit	point	of	the	trajectory	of	𝐱!,	provided	
that	𝜙 𝑡; 𝐱! 	keeps	coming	near	q	as	t	goes	to	infinity.	Certainly,	if	
𝜙 𝑡; 𝐱! − 𝐱∗ 	goes	to	zero	as	t	goes	to	infinity,	then	𝐱∗	is	the	only	𝜔-

limit	point	of	𝐱!.	The	set	of	all	𝜔-limit	points	is	denoted	by	𝜔 𝐱! 	and	is	
called	𝜔-limit	set	of	𝐱!.	
	
Definition:	Similarly,	a	point	q	is	an	𝛼-limit	point	of	the	trajectory	of	𝐱!,	
provided	that	𝜙 𝑡; 𝐱! 	keeps	coming	near	q	as	t	goes	to	minus	infinity.	
In	particular,	if	 𝜙 𝑡; 𝐱! − 𝐱∗ 	goes	to	zero	as	t	goes	to	minus	infinity,	
then	𝐱∗	is	the	only	𝛼-limit	point	of	𝐱!.	The	set	of	all	𝛼-limit	points	is	
denoted	by	𝛼 𝐱! 	and	is	called	𝛼-limit	set	of	𝐱!.	
	



	
	

Definition:	For	a	fixed	point	𝐱∗,	the	stable	manifold	𝑊!(𝐱∗)	is	the	set	of	
all	points	which	tend	to	the	fixed	point	as	t	goes	to	plus	infinity:	
𝑊! 𝐱∗ = 𝐩!:𝜙 𝑡;𝐩! tends to 𝐱∗ as 𝑡 → ∞  = 𝐩!:𝜔 𝐩! = 𝐱∗ 	

If	the	stable	manifold	is	an	open	set,	then	𝑊!(𝐱∗)	is	called	the	basin	of	
attraction	of	𝐱∗.	
	
Definition:	A	fixed	point	𝐱∗	is	said	to	be	Lyapunov	stable	or	L-stable,	
provided	that	any	solution	𝜙 𝑡; 𝐱! 	stays	near	𝐱∗	for	all	𝑡 ≥ 0,	if	the	
initial	condition	𝐱!	stays	near	𝐱∗.		More	precisely,	a	fixed	point	𝐱∗	is	said	
to	be	Lyapunov	stable,	provided	that	for	any	𝜖 > 0,	there	is	a	𝛿 > 0	
such	that,	if	 𝐱! − 𝐱∗ < 𝛿,	then	 𝜙 𝑡; 𝐱! − 𝐱∗ < 𝜖	for	all	𝑡 ≥ 0.	
	
Definition:	A	fixed	point	𝐱∗	is	called	unstable,	provided	that	it	is	not	L-
stable(i.e	there	exists	and	𝜖! > 0	such	that	for	any	𝛿 > 0	there	is	some	
point	𝐱! 	with	 𝐱! − 𝐱∗ < 𝛿	and	a	time	𝑡! > 0	depending	on	𝐱! 	with	
𝜙 𝑡!; 𝐱! − 𝐱∗ > 𝜖!).	Thus,	trajectories	that	start	as	near	as	𝐱∗	as	we	

would	like	to	specify	move	at	least	a	distance	𝜖!	away	from	𝐱∗.	
	
Definition:	A	fixed	point	𝐱∗	is	called	weakly	asymptotically	stable,	
provided	that	there	exists	a	𝛿! > 0	such	that	𝜔 𝐱! = 𝐱∗ 	for	all	
𝐱! − 𝐱∗ < 𝛿!.	(i.e	 𝜙 𝑡; 𝐱! − 𝐱∗ 	goes	to	zero	as	t	goes	to	infinity	

for	all	 𝐱! − 𝐱∗ < 𝛿!).	Thus,	a	fixed	point	is	called	weakly	
asymptotically	stable,	provided	that	the	stable	manifold	contains	all	
points	in	a	neighborhood	of	the	fixed	point.	(i.e	all	points	sufficiently	
close)	
	
	
A	fixed	point	𝐱∗	is	called	asymptotically	stable	(attracting),	provided	
that	it	is	both	L-stable	and	weakly	asymptotically	stable.		An	
asymptotically	stable	fixed	point	is	also	called	a	fixed	point	sink.	
	
	
	



	
	

Definition:	A	fixed	point	is	called	repelling	or	a	fixed	point	source,	
provided	that	it	is	asymptotically	stable	backward	in	time		
(i.e	(i)for	any	closeness		𝜖 > 0,	there	is	a	𝛿 > 0	such	that	if	 𝐱! − 𝐱∗ <
𝛿,	then	 𝜙 𝑡; 𝐱! − 𝐱∗ < 𝜖	for	all	𝑡 ≤ 0.	
(ii)	there	exists	𝛿! > 0	such	that	𝛼 𝐱! = 𝐱∗ 	for	all	 𝐱! − 𝐱∗ < 𝛿!).	
	
Definition:	A	fixed	point	is	called	hyperbolic,	provided	that	none	of	the	
eigenvalues	at	the	fixed	point	have	zero	real	part.	
	
	
For	linear	system,	the	criteria	for	stability	is	in	the	theorem	below	
Theorem:	Consider	the	linear	differential	equation		 	

𝐱 = 𝐀𝐱	
(a) If	all	of	the	eigenvalues	𝜆	of	𝐀	have	negative	real	parts,	then	the	

origin	is	asymptotically	stable	
(b) If	one	of	the	eigenvalues	has	a	positive	real	part,	then	the	origin	is	

unstable.	
(c) In	two	dimensions,	if	the	eigenvalues	are	purely	imaginary	±𝛽𝑖,	then	

the	origin	is	L-stable	but		not	asymptotically	stable.	
(d) In	two	dimensions,	if	one	eigenvalue	is	0	and	the	other	is	negative,	

then	the	origin	is	L-stable	but	not	asymptotically	stable.	
	
	
	
	
	
	
	

	

	

	



	
	

1.2	One	dimensional	Differential	Equations	

	
Theorem:	Consider	a	differential	equation	𝑥 = 𝑓(𝑥)	on	ℝ,	for	which	
𝑓(𝑥)	has	a	continuous	derivative.		Assume	that	𝑥 𝑡 = 𝜙(𝑡: 𝑥!)	is	the	
solution,	with	initial	condition	𝑥!.		Assume	that	the	maximum	interval	
containing	0	for	which	it	can	be	defined	is	(𝑡!, 𝑡!).	
(a) Further	assume	that	the	solution	𝜙(𝑡: 𝑥!)	is	bounded	for	0 ≤ 𝑡 ≤
𝑡!,	(i.e.,	there	is	a	constant	𝐶 > 0	such	that	 𝜙(𝑡: 𝑥!) ≤ 𝐶	for	
0 ≤ 𝑡 ≤ 𝑡!)	.	Then	𝜙(𝑡: 𝑥!)	must	converge	either	to	a	fixed	point	or	
to	a	point	where	𝑓(𝑥)	is	undefined	as	𝑡	converges	to	𝑡!.	

(b) Similarly,	if	the	solution	𝜙(𝑡: 𝑥!)	is	bounded	for	𝑡! < 𝑡 ≤ 0,	then	
𝜙(𝑡: 𝑥!)	must	converge	to	either	to	a	fixed	point	or	to	a	point	where	
𝑓(𝑥)	is	undefined	as	𝑡	converges	to	𝑡!.	

(c) Assume	that		𝑓(𝑥)	is	defined	for	all	𝑥	in	ℝ.		
(i) If	𝑓 𝑥! > 0,	assume	that	there	is	a	fixed	point	𝑥∗ > 𝑥!,	and	

in	fact	let	𝑥∗	be	the	smallest	fixed	point	larger	than	𝑥!.	
(ii) If	𝑓 𝑥! < 0,	assume	that	there	is	a	fixed	point	𝑥∗ < 𝑥!,	and	

in	fact	let	𝑥∗	be	the	largest	fixed	point	less	than	𝑥!.Then,	
𝑡! = ∞	and	𝜙(𝑡: 𝑥!)	converges	to	𝑥∗	as	𝑡	goes	to	infinity.	

	

Lemma:	Assume	that,	for	all	𝑡 ≥ 0,	𝑔(𝑡)	is	defined,	𝑔(𝑡)	is	bounded,	
	 𝑔! 𝑡 > 0,	and	𝑔! 𝑡 	is	uniformly	continuous.	Then	𝑔! 𝑡 	approaches	0	and	
	 𝑔(𝑡)	approaches	a	limiting	value	as	𝑡	goes	to	infinity.	

	

	

	

	

	



	
	

Theorem:	Consider	a	fixed	point	𝑥∗	for	the	differential	equation	𝑥 = 𝑓(𝑥)	where	
𝑓	and	𝑓′	are	continuous.	

(a) If	𝑓! 𝑥∗ < 0,	then	𝑥∗	is	an	attracting	fixed	point.	
(b) If	𝑓! 𝑥∗ > 0,	then	𝑥∗	is	a	repelling	fixed	point.	
(c) If	𝑓! 𝑥∗ = 0,	then	the	derivative	does	not	determine	the	stability	type.	

	

Examples:	For	each	of	the	differential	equation	below	

(a) find	the	stability	type	of	each	fixed	point.		
(b) Sketch	the	phase	portrait	on	the	line.	
(c) Sketch	the	graph	of	𝑥 𝑡 = 𝜙(𝑡; 𝑥!)	in	the	(𝑡, 𝑥)-plane	for	several	

representative	initial	conditions	𝑥!.	

1. 𝑥 = 𝑟𝑥 1 − !
!

		

2. 𝑥 = 𝑥! − 9	
3. 𝑥 = −𝑥	
4. 𝑥 = 𝑥!	

	
	

	

	
	
	
	
	

	



	
	

	

	

	

	

	



	
	

1.2 Two	dimensions		

Consider	linear	two-dimensional	autonomous	system	of	the	form	

𝑥 = 𝑎!!𝑥 + 𝑎!"𝑦	
𝑦 = 𝑎!"𝑥 + 𝑎!!𝑦	

	where	𝑎!" 	are	constants.		The	system	can	be	written	in	matrix	form	

𝒙 = 𝐴𝒙								

where	𝒙 =
𝑥
𝑦 	and	𝐴 =

𝑎!! 𝑎!"
𝑎!" 𝑎!! .		

Let’s	say,	we	assume	the	solution	is		

𝒙 = 𝒗𝑒!"	

where	𝒗	is	a	matrix	independent	of	𝑡.	

𝒙 = 𝜆𝒗𝑒!" = 𝐴𝒗𝑒!"	

𝜆𝒗 = 𝐴𝒗	

𝐴𝒗 − 𝜆𝒗 = 0	

𝐴 − 𝜆𝐈 𝒗 = 0	

																																																											det 𝐴 − 𝜆𝐈 = 0	

	

		 	 	 	 		
𝑎!! − 𝜆 𝑎!"
𝑎!" 𝑎!! − 𝜆

= 0	

The	characteristic	polynomial	is		

𝑎!! − 𝜆 𝑎!! − 𝜆 − 𝑎!"𝑎!" = 0	

𝜆! − 𝑎!! + 𝑎!! 𝜆 + 𝑎!!𝑎!! − 𝑎!"𝑎!" = 0	

𝜆! − trace 𝐴 λ + det𝐴 = 0	



	
	

Definition:	A	critical	point	𝐱∗	of	the	system		

𝐱 = 𝐟(𝐱),				𝐱 ∈ ℝ!	

at	which	the	Jacobian	matrix	has	no	zero	eigenvalues	is	called	nondegenerate	
critical	point;	otherwise,	it	is	called	a	degenerate	critical	point.	

	

Theorem:	Let	𝐴	be	a	2×2	matrix	with	determinant	∆	and	trace	𝜏.	

(a) If	∆< 0,	then	the	linear	system	is	a	saddle,	and	therefore	unstable.	
(b) If	∆> 0	and	𝜏 > 0,	then	the	linear	system	is	unstable.	

(i) If	𝜏! − 4∆> 0,	then	it	is	an	unstable	node.	
(ii) If	𝜏! − 4∆= 0,	then	it	is	a	degenerate	unstable	node.	
(iii) If	𝜏! − 4∆< 0,	then	it	is	an	unstable	focus.	

(c) If	∆> 0	and	𝜏 < 0,	then	the	linear	system	is	asymptotically	stable.	
(i) If	𝜏! − 4∆> 0,	then	it	is	a	stable	node.	
(ii) If	𝜏! − 4∆= 0,	then	it	is	a	degenerate	stable	node.	
(iii) If	𝜏! − 4∆< 0,	then	it	is	a	stable	focus.	

(d) If	∆= 0,	then	one	or	more	of	the	eigenvalues	is	0.	
(i) If	𝜏 > 0,	then	the	second	eigenvalue	is	positive.	
(ii) If	𝜏 = 0,	then	both	eigenvalues	are	zero.	
(iii) If	𝜏 < 0,	then	the	second	eigenvalue	is	negative.	

	



	
	

	

	

	



	
	

	

	

Definition:	The	curves	where	𝑥 = 0	and	𝑦 = 0	are	called	nullclines	or	isoclines.	

Definition:	The	phase	portrait	is	a	two-dimensional	figure	showing	how	the	
qualitative	behavior	of	the	system	is	determined	as	𝑥	and	𝑦	vary	with	𝑡.	

Definition:	The	direction	field	or	vector	field	gives	the	gradients	!"
!"
	and	direction	

vectors	of	the	trajectories	in	the	phase	plane.	

	

Constructing	Phase	plane	diagram	

The	method	of	plotting	phase	portraits	for	nonlinear	planar	system	having	
hyperbolic	critical	point	may	be	broken	into	three	distinct	steps:	

1. Locate	all	of	the	critical	points	
2. Linearize	and	classify	each	critical	point	according	to	Hartman’s	theorem	

3. Determine	the	isoclines	and	use	!"
!"
	to	obtain	slopes	of	the	trajectories.	

	

Examples:	

5. Consider	the	system	of	linear	differential	equations	
𝑥 = 3𝑥 + 𝑦	
𝑦 = −𝑥 + 3𝑦	

Sketch	the	phase	portrait	of	the	system.		
	

6. Consider	the	system	of	linear	differential	equations	
𝑥 = 3𝑥 + 4𝑦	
𝑦 = 4𝑥 − 3𝑦	

Sketch	the	phase	portrait	of	the	system.		

	



	
	

	

	

	



	
	

	

	

Linearization	and	Hartman’s	Theorem	

Suppose		the	nonlinear	autonomous	system	

𝑥 = 𝑓(𝑥, 𝑦)	

𝑦 = 𝑔(𝑥, 𝑦)	

Have	a	critical	point	at		(𝑢, 𝑣).	Take	a	linear	transformation	which	moves	the	
critical	point	to	the	origin.	Let	𝑋 = 𝑥 − 𝑢	and	𝑌 = 𝑦 − 𝑣.	The	system	becomes	

𝑋 = 𝑓 𝑋 + 𝑢,𝑌 + 𝑣 = 𝑓 𝑢, 𝑣 + 𝑋
𝜕𝑓
𝜕𝑥 !!!,!!!

+ 𝑌
𝜕𝑓
𝜕𝑦 !!!,!!!

+ 𝑅(𝑋,𝑌)	

𝑌 = 𝑔 𝑋 + 𝑢,𝑌 + 𝑣 = 𝑔 𝑢, 𝑣 + 𝑋
𝜕𝑔
𝜕𝑥 !!!,!!!

+ 𝑌
𝜕𝑔
𝜕𝑦 !!!,!!!

+ 𝑆(𝑋,𝑌)	

after	a	Taylor	series	expansion,	where	𝑅	and	𝑆	are	nonlinear	terms.		The		
linearized	system		at	the	critical	point	 𝑢, 𝑣 	is	then	of	the	form	

𝑋 == 𝑋
𝜕𝑓
𝜕𝑥 !!!,!!!

+ 𝑌
𝜕𝑓
𝜕𝑦 !!!,!!!

	

𝑌 = 𝑋
𝜕𝑔
𝜕𝑥 !!!,!!!

+ 𝑌
𝜕𝑔
𝜕𝑦 !!!,!!!

	

which	can	be	written	as	 𝑋
𝑌

=

!"
!"

!"
!"

!"
!"

!"
!"

𝑋
𝑌 .	

𝐽 𝑢, 𝑣 =

!"
!"

!"
!"

!"
!"

!"
!" !!!,!!!

is	known	as	the	Jacobian	matrix.	

	



	
	

	

Hartman’s	Theorem:	Suppose	that	(𝑢, 𝑣)	is	a	hyperbolic	critical	point	of	the	
system 

𝑥 = 𝑓(𝑥, 𝑦)	

𝑦 = 𝑔 𝑥, 𝑦 ,	

then	there	is	a	neighborhood	of	this	critical	point	on	which	the	phase	portrait	for	
the	nonlinear	system	resembles	that	of	the	linearized	system.		In	other	words,	
there	is	a	curvilinear	continuous	change	of	coordinate	taking	one	phase	portrait	
to	the	other	,	and	in	a	small	region	around	the	critical	point,	the	portrait	are	
qualitatively	equivalent.	

	

Examples:		

7. Consider	the	system	of	differential	equations	given	
𝑥 = 𝑥! − 𝑦	
𝑦 = 𝑥 − 𝑦	

(a) Determine	the	fixed	points	
(b) Determine	the	nullclines	and	the	signs	of	𝑥	and	𝑦	in	the	various	regions	

of	the	plane.	
(c) Using	the	information	from	part(a)	and	(b),	sketch	by	hand	a	rough	

phase	portrait.		
8. Consider	the	system	of	differential	equations	

𝑥 = 𝑥! − 𝑦!	
𝑦 = 𝑥𝑦 − 1	

(a) Determine	the	fixed	points	
(b) Determine	the	nullclines	and	the	signs	of	𝑥	and	𝑦	in	the	various	regions	

of	the	plane.	
(c) Using	the	information	from	part(a)	and	(b),	sketch	by	hand	a	rough	

phase	portrait.		
	
	



	
	

9. Consider	the	system	of	differential	equations	
𝑥 = −𝑥 + 𝑦	
𝑦 = 𝑥𝑦 − 1	

(a)Determine	the	fixed	points	

(b)Determine	the	nullclines	and	the	signs	of	𝑥	and	𝑦	in	the	various	regions					
of	the	plane.	

(c)Using	the	information	from	part(a)	and	(b),	sketch	by	hand	a	rough	phase	
portrait.		

	

	

	

	



	
	

	

	

	

	

	

	

	

	

	

	

	

	

	



	
	

1.3 	Hamiltonian	Systems	in	the	Plane	

Definition:	A	system	of	differential	equations	on	ℝ!	is	said	to	be	Hamiltonian	with	
one	degree	of	freedom	if	it	can	be	expressed	in	the	form	

𝑑𝑥
𝑑𝑡

=
𝜕𝐻
𝜕𝑦

	

𝑑𝑦
𝑑𝑡

= −
𝜕𝐻
𝜕𝑥

	

where	𝐻(𝑥, 𝑦)	is	a	twice-continuously	differentiable	function.		The	system	is	said	
to	be	conservative	and	there	is	no	dissipation.	In	applications,	the	Hamiltonian	is	
defined	by	

𝐻 𝑥, 𝑦 = 𝐾 𝑥, 𝑦 +  𝑉(𝑥, 𝑦)	

where	𝐾 𝑥, 𝑦 	is	the	kinetic	energy	and		𝑉(𝑥, 𝑦)	is	the	potential	energy.	The	
trajectories	lie	on	the	contour	defined	by		

𝐻 𝑥, 𝑦 = 𝐶.	

	

Theorem:	(Conservation	of	Energy)	The	total	energy	𝐻 𝑥, 𝑦 	is	a	first	integral	and	
a	constant	of	the	motion.	

Proof:	The	total	derivative	along	a	trajectory	is	given	by	

𝑑𝐻
𝑑𝑡

=
𝜕𝐻
𝜕𝑥

𝑑𝑥
𝑑𝑡
+
𝜕𝐻
𝜕𝑦

𝑑𝑦
𝑑𝑡

= 0	

Therefore,	𝐻 𝑥, 𝑦 	is	constant	along	the	solution	curve	of	the	Hamiltonian	
system,	and	the	trajectories	lie	on	the	contour	defined	by	𝐻 𝑥, 𝑦 = 𝐶.	

	

	

	



	
	

Definition:	A	critical	point	𝐱∗	of	the	system		

𝐱 = 𝐟(𝐱),				𝐱 ∈ ℝ!	

at	which	the	Jacobian	matrix	has	no	zero	eigenvalues	is	called	nondegenerate	
critical	point;	otherwise,	it	is	called	a	degenerate	critical	point.	

Theorem:	Any	nondegenerate	critical	point	of	an	analytic	Hamiltonian	system	is	
either	a	saddle	or	a	centre.	

Examples:		

7.				(Double-Well	Potential/Duffing	equation)	:	

								(a)		Find	the	Hamiltonian	for	the	given	system,	and	sketch	the	phase	portrait.	

𝑥 = 𝑦	

																																																																				𝑦 = 𝑥 − 𝑥!	

								(b)		

𝑥 = 𝑦	

																																																																				𝑦 = −𝑥 − 𝑥!	

							(c)	

    𝑥 = 𝑦 + 𝑥! − 𝑦!	

											𝑦 = −𝑥 − 2𝑥𝑦	

	

8.	The	motion	of	a	pendulum	in	the	plane	is	governed	by	the	differential	equation	

!!!
!!!

+ !
!
sin 𝜃 = 0.	

	where	𝜃	is	the	angular	displacement	from	the	vertical,	𝑙	is	the	length	of	the						
arm	of	the	pendulum,	which	swings	in	the	plane,	and	𝑔	is	the	acceleration	due	to	
gravity.	The	model	does	not	take	into	account	the	resistive	forces,	so	once	the	



	
	

pendulum	is	set	into	motion,	it	will	swing	periodically	forever,	thus	obeying	the	
conservation	of	energy.		The	system	can	be	written	as	a	planar	system	as	

𝜃 = 𝜙	

																																																																				𝜙 = − !
!
sin 𝜃	

The	system	is	a	Hamiltonian	system	with	

𝐻 𝜃,𝜙 =
𝜙!

2
−
𝑔
𝑙
cos 𝜃	

	

	

	

Phase	portrait	of	example	7(a)	

	



	
	

	

Phase	portrait	of	example	7(b)	

	

Phase	portrait	of	example	7(c)	
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Definition:	Suppose	𝐱∗	is	a	critical	point	of	the	system		

𝐱 = 𝐟(𝐱),				𝐱 ∈ ℝ!.	

If	𝛾!(𝜙 𝑡, 𝐱! ) = 𝛾!(𝜙 𝑡, 𝐱! ) = 𝐱∗,	then	the	trajectory	is	a	homoclinic	orbit.	

	

Definition:	Suppose	that	𝐱𝟏	and	𝐱𝟐	are	distinct	critical	points.		If	𝛾! 𝜙 = 𝐱𝟏	and	
𝛾! 𝜙 = 𝐱𝟐,	then	𝜙(𝑡, 𝐱𝟎)	is	called	a	heteroclinic	orbit.	

	

	

	

	

	



	
	

1.4 	Lyapunov	Functions	and	Stability	

If	a	critical	point	is	nonhyperbolic,	then	a	method	due	Lyapunov	may	sometimes	
be	used	to	determine	the	stability	of	the	critical	point	

The	Lyapunov	Stability	Theorem:	Given	a	system		

𝐱 = 𝐟(𝐱),				𝐱 ∈ ℝ! .	

Let	𝐸	be	an	open	subset	of	ℝ!containing	an	isolated	critical	point	𝐱∗.		Suppose	
that	𝐟	is	continuously	differentiable	and	that	there	exists	a	continuously	function	
say	𝑉(𝐱),	which	satisfies	the	following	conditions:	

• 𝑉 𝐱∗ = 0;	
• 𝑉(𝐱) > 0,	if	𝐱 ≠ 𝐱∗,	

where			𝐱 ∈ 𝐸. 	Then	

(a) if	𝑉( 𝐱) ≤ 0	for	all	𝐱 ∈ 𝐸,	𝐱∗	is	stable.	
(b) if	𝑉( 𝐱) < 0	for	all	𝐱 ∈ 𝐸,	𝐱∗	is	asymptotically	stable.	
(c) if	𝑉( 𝐱) > 0	for	all	𝐱 ∈ 𝐸,	𝐱∗	is	unstable.	

Definition:	The	function	𝑉(𝐱)	is	called	a	Lyapunov	function.	

	

Unfortunately,	there	is	no	systematic	way	to	construct	a	Lyapunov	function.		Note	
that	if	𝑉( 𝐱) = 0,	then	all	trajectories	lie	on	the	curves	(“surfaces”	in	ℝ!)	defined	
by	𝑉 𝐱 = 𝐶,	where	𝐶	is	a	constant.		The	quantity	𝑉 gives	the	rate	of	change	of	𝑉	
along	trajectories;	in	other	words,	𝑉 gives	the	direction	that	the	trajectories	cross	
the	level	curve	𝑉 𝐱 = 𝐶.	

	

Definition:	Given	a	Lyapunov	function	𝑉(𝑥, 𝑦),	the	Lyapunov	domain	of	stability	is	
defined	by	the	region	for	which	𝑉(𝑥, 𝑦) < 0.	

	



	
	

Definition:	A	set	𝑆	is	called	positively	invariant	provided	that,	whenever	𝒙!	is	in	𝑆,	
then	𝜙 𝑡; 𝐱! 	is	in	𝑆	for	all	𝑡 ≥ 0.	

	

	

	

Examples:	

	

(9)	Investigate	the	stability	of	the	origin	for	the	system	

𝑥 = 𝑦	

																																																																				𝑦 = −𝑥 − 𝑦(1 − 𝑥!)	

						Using	the	Lyapunov	function	𝑉 𝑥, 𝑦 = 𝑥! + 𝑦!.	

	

	

(10)	Investigate	the	stability	of	the	origin	for	the	system	

𝑥 = −𝑦 − 𝑥!	

																																																														𝑦 = 𝑥 − 𝑦!	

						Using	the	Lyapunov	function	𝑉 𝑥, 𝑦 = 𝑥! + 𝑦!.	
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Example	10	

1.5	The	Routh-Hurwitz	Criteria	

Given	

	𝐱 = 𝐟(𝐱),				𝐱 ∈ ℝ! .	

The	jacobian	



	
	

𝐉 =

𝜕𝑓!
𝜕𝑥!

𝜕𝑓!
𝜕𝑥!

…
𝜕𝑓!
𝜕𝑥!

⋮
𝜕𝑓!
𝜕𝑥!

𝜕𝑓!
𝜕𝑥!

…
𝜕𝑓!
𝜕𝑥!

	

The	characteristic	equation	is	of	the	form	

det 𝐉 − λ𝐈 = 0.	

𝑃 𝜆 = 𝜆! + 𝑎!𝜆!!! + 𝑎!𝜆!!!⋯+ 𝑎! = 0.	

 

 

Define n matrices as follows: 

𝐇! = 𝑎!           𝐇! =
𝑎! 1
0 𝑎!

    𝐇! =
𝑎! 1 0
𝑎! 𝑎! 𝑎!
0 0 𝑎!

 

     

𝐇! =

𝑎! 1 0
𝑎! 𝑎! 𝑎!
𝑎! 𝑎! 𝑎!

    
0 …
1 ⋯
𝑎! ⋯

   
0
0
0  

𝑎!!!!𝑎!!!! 𝑎!!!!   ⋯ 𝑎!

…..𝐇! =

𝑎! 1 0 ⋯ 0
𝑎!
⋮

𝑎! 𝑎! ⋯
⋮ ⋮

0
⋮

0 0 ⋯ ⋯ 𝑎!

 

where the (𝑙,𝑚) term in the matrix 𝐇! is 



	
	

𝑎!!!! for 0 < 2𝑙 −𝑚 < 𝑘 

1 for 2𝑙 = 𝑚 

0 For 2𝑙 < 𝑚   or   2𝑙 > 𝑘 +𝑚 

Then all eigenvalues  have negative real parts: that is, the critical point 𝐱∗ is stable 

if and only if the determinants of all Hurwitz matrices are positive: 

det 𝐇! > 0    (𝑗 = 1,2,3,… , 𝑘) 

Routh-Hurwitz Criteria for 𝑘 = 2,3,4 

𝑘 = 2 𝑎! > 0,  𝑎! > 0  

𝑘 = 3 𝑎! > 0,  𝑎! > 0 𝑎!𝑎! > 𝑎! 

𝑘 = 4 𝑎! > 0, 𝑎! > 0, 𝑎! > 0 𝑎!𝑎!𝑎! > 𝑎!! + 𝑎!!𝑎! 

Example:	

Given	a	two	preys	and	one	predator	equations	

𝑑𝑥
𝑑𝑡

= 𝛼𝑥𝑧 + 𝛽𝑥𝑦 − 𝛾𝑥,	

𝑑𝑦
𝑑𝑡

= 𝛿𝑦 − 𝜖𝑥𝑦,	

𝑑𝑧
𝑑𝑡

= 𝜇𝑧 𝜈 − 𝑧 − 𝜒(𝑥𝑧)	


