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Chapter 2: Partial Derivatives 

2.1 Definition of a Partial 

Derivative 

 The process of differentiating a function 

of several variables with respect to one of 

its variables while keeping the other 

variables fixed is called partial 

differentiation. 

 The resulting derivative is a partial 

derivative of the function. 

 

See illustration 
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As an illustration, consider the surface area of a 

right-circular cylinder with radius r and height h: 

 

 

 

 

 

 

 

 

We know that the surface area is given by 
22 2S r rhp p . This is a function of two 

variables r and h. 

Suppose r is held fixed while h is allowed to 

vary. Then, 

 const.
2

r

dS
r

dh
p  

This is the “partial derivative of S with respect 

to h”. It describes the rate with which a 

cylinder’s surface changes if its height is 

increased and its radius is kept constant. 

Likewise, suppose h is held fixed while r is 

allowed to vary. Then, 

h 

r 
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 const.
4 2

h

dS
r h

dr
p p  

This is the “partial derivative of S with respect 

to r”. It represents the rate with which the surface 

area changes if its radius is increased and its 

height is kept constant. 

In standard notation, these expressions are 

indicated by 

2hS rp , 4 2rS r hp p  

Thus in general, the partial derivative of 

( , )z f x y  with respect to x, is the rate at which z 

changes in response to changes in x, holding y 

constant. Similarly, we can view the partial 

derivative of z with respect to y in the same way.  

Note 

Just as the ordinary derivative has different 

interpretations in different contexts, so does a 

partial derivative. We can interpret derivative as a 

rate of change and the slope of a tangent line. 
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Recall: Derivative of a single variable f 

is defined formally as, 

x

xfxxf
xf

x 





)()(
lim)(

0





 

The definition of the partial derivatives with 

respect to x and y are defined similarly. 

Definition 2.1 

If ),( yxfz  , then the (first) partial 

derivatives of  f  with respect to x and y 

are the functions  xf   and  yf   respectively 

defined by 

x

yxfyxxf
f

x
x 





),(),(
lim

0





 

y

yxfyyxf
f

y
y 





),(),(
lim

0





 

provided the limits exist. 
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2.1.1 Notation 

For ),( yxfz  , the partial derivatives xf  

and yf  are also denoted by the symbols: 

x

f




,  

x

z




,  ),( yxf

x


,  ),( yxf x   or  xz  

y

f




,  

y

z




,  ),( yxf

y


,  ),( yxf y   or  yz  

The values of the partial derivatives at the 

point (a, b) are denoted by 

),(
),(

baf
x

f
x

ba





  and  ),(

),(

baf
y

f
y

ba





 

Note 

 The stylized “d” symbol in the notation 

is called roundback d, curly d or del d. 

 It is not the usual derivative d (dee) or 

 (delta d). 
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Illustration 
 Finding and evaluating partial derivative of a 

function of two variables 

 Finding partial derivative of a function of 

three variables 

 Finding partial derivative of an implicitly 

defined function 

Example 2.7 
If 

3 2 2( , ) 4f x y x y x y x , 

find 

i.  
f
x

  ii. 
f
y

 iii. (1, 2)yf   

Prompts/Questions 
 What do the 

notations stand for? 

o Which variable is 

changing? 

o Which variable is 

held constant? 

 Which variables give 

the value of a 

derivative?   
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Solution 

(a) For xf , hold y constant and find the 

derivative with respect to x: 

3 2 2 2 23 2 4
f

x y x y x y xy
x x

 

(b) For yf , hold x constant and find the 

derivative with respect to y: 

3 2 2 3 22
f

x y x y x x y
y y

 

(c) 3 2(1, 2) (1) 2(1) ( 2) 3yf  
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For a function ),,( zyxf  of three variables, 

there are three partial derivatives: 

xf ,   yf    and   zf  

The partial derivative xf  is calculated by 

holding y and z constant. Likewise, for yf  

and zf . 

Example 2.2 

Let 322 2),,( yzxyxzyxf  , find: 

(a) xf   (b) yf  (c) zf  

Solution 

(a) 222),,( yxzyxf x   

(b) 34),,( zxyzyxf y   

(c) 23),,( yzzyxf z   
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The rules for differentiating functions of a 

single variable holds in calculating partial 

derivatives. 

Example 2.3 

Find 
y

f




 if )ln(),( yxyxf  . 

Solution 

We treat x as a constant and  f  as a 

composite function: 

)(
1

)][ln( yx
yyx

yx
yy

f

















 

)10(
1





yx

 

yx 


1
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Example 2.3a 

Determine the partial derivatives of the 

following functions with respect to each 

of the independent variables: 

(a) 
52 )3( yxz   

(b) 
yxzew 73   
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Example 2.3b 

Determine the partial derivatives of the 

following functions with respect to each 

of the independent variables: 

a) )52sin( 2 yxxz   

b) 
xy

y
yxf

cos

2
),(


  
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Example 2.4 

If )( 22 yxfz  , show that 

0









x

z
y

y

z
x  
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Example 2.5 

Find 
x

z




 if the equation 

yxzyz  ln  

defines z as a function of two independent 

variables x and y. 

Solution 

We differentiate both sides of the equation 

with respect to x, holding y constant and 

treating z as a differentiable function of x: 

)()()(ln)( y
x

x
x

z
x

yz
x 

















 

01
1











x

z

zx

z
y ,      y constant 

1
1












 
x

z

z
y  

1







yz

z

x

z
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Example 2.5a 

If 

023)2cos( 2  xyzyzx  

defines z as a function of two independent 

variables x and y. Determine expressions 

for 
x
z

  and 

y
z

  in terms of x, y and z. 

 



 16 

2.1.2 Partial Derivative as a Slope 

To understand the concept let’s take a 

look at the one-variable case: 

 

 

 

 

 

 

 

 

 

 

At P, the tangent line to the curve C has 

slope )(xf  . 

 P 

Curve C 

 f(x) 

 f(x + x) 

Tangent line 

Secant 

 x x + x 
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The intersection of the plane 0y y  with the 

surface ( , )z f x y . 

 

fuaada
Sticky Note
fx is a slope of tangent line parallel to x-axis
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The intersection of the plane 0x x  with the 

surface ( , )z f x y . 

 

fuaada
Sticky Note
fy is a slope of tangent line parallel to y-axis
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Example 2.6 

Find the slope of the line that is parallel to 

the xz-plane and tangent to the surface 

yxxz   at the point )2,3,1(P . 

Solution 

Given ( , )f x y x x y   

WANT: )3,1(xf  

)01()(
2

1
)(),( 2121 







 yxxyxyxf x  

yx

x
yx




2
 

Thus the required slope, 

4

9

312

1
31)3,1( 


xf  
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2.1.3 Partial Derivative as a Rate 

of Change 

The derivative of a function of one 

variable can be interpreted as a rate of 

change. Likewise, we can obtain the 

analogous interpretation for partial 

derivative.  

 A partial derivative is the rate of 

change of a multi-variable function 

when we allow only one of the 

variables to change. 

 Specifically, the partial derivative 
x

f




 

at ),( 00 yx  gives the rate of change of f 

with respect to x when y is held fixed at 

the value y0. 
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Example 2.7 

The volume of a gas is related to its 

temperature T and its pressure P by the 

gas law TPV 10 , where V is measured 

in cubic inches, P in pounds per square 

inch, and T in degrees Celsius. If T is kept 

constant at 200, what is the rate of change 

of pressure with respect to volume at 

50V ? 

Solution 

WANT: 
50,200 



VTV

P
 

Given TPV 10 . 

2

10

V

T

V

P 





 

2
200, 50

( 10)(200) 4

(50) 5T V

P

V  

 
   


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2.1.4 Higher Order Partial 

Derivatives 

The partial derivative of a function is a 

function, so it is possible to take the 

partial derivative of a partial derivative. 

If z is a function of two independent 

variables, x and y, the possible partial 

derivatives of the second order are: 

 second partial derivative – taking two 

consecutive partial derivatives with 

respect to the same variable 

 mixed partial derivative - taking 

partial derivatives with respect to one 

variable, and then take another partial 

derivative with respect to a different 

variable 
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Standard Notations 

Given ),( yxfz   

Second partial derivatives 

2

2

x

f




 = 
















x

f

x
 = xxf )(  = xxf  

2

2

y

f




 = 
















y

f

y
 = yyf )(  = yyf  

Mixed partial derivatives 

yx

f



2

 = 















y

f

x
 = xyf )(  = yxf  

xy

f



2

 = 















x

f

y
 = yxf )(  = xyf  
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Remark 

 The mixed partial derivaties can give 

the same result whenever f,  fx,  fy,  fxy 

and  fyx   are all continuous. 

 Partial derivaties of the third and 

higher orders are defined analogously, 

and the notation for them is similar. 

2

3

yx

f




 = 



























y

f

yx
 = yyxf  

22

4

yx

f




 = 






































y

f

yxx
 = yyxxf  

The order of differentiation is 

immaterial as long as the derivatives 

through the order in question are 

continuous. 
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Example 2.8 

Let 3 2 37 5 6z x x y y   . 

Find the indicated partial 

derivatives. 

i.  
2z
x y

       ii. 
2z
y x

 

iii. 
2

2
z
x

         iv. (2,1)xyf  

Prompts/Questions 

 What do the notations 

represent? 

 What is the order of 

differentiation? 

o With respect to 

which variable do 

you differentiate 

first? 

Solution 

Keeping y fixed and differentiating w.r.t. x, we 

obtain 221 10
z

x xy
x

. 

Keeping x fixed and differentiating w.r.t. y, we 

obtain  2 25 18
z

x y
y

. 

(i) 
2

2 2( 5 18 ) 10
z z

x y x
x y x y x

 

(ii) 
2

2(21 10 ) 10
z z

x xy x
y x y x y

 

(iii) 
2

2
2 (21 10 ) 42 10
z z

x xy x y
x z xx
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(iv) 
2

(2,1)

(2,1) 10(2) 20xy
z

f
y x

 

 

Example 2.9 
Determine all first and 

second order partial 

derivatives of the 

following functions: 

i. sin cosz y x x y  

ii. (2 )xyz e x y  

iii. ( , ) cos xf x y x y ye  

Prompts/Questions 
 What are the first 

partial derivatives of f ? 

o Which derivative 

rules or techniques 

do you need? 

 How many second-

order derivatives are 

there?    
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2.2 Increments and Differential 

2.2.1 Functions of One Variable – 

A Recap 

Tangent Line approximation 

 

 

 

 

 

 

 

If f is differentiable at 0xx  , the tangent 

line at ))(,( 00 xfxP  has slope )( 0xfm   

and equation 

y = f(x0) + )( 0xf  (x  x0) 

x 

x1  x0 

 f 

y 

 P  f(x0) 

T 

 f(x1) 
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If x1 is near x0, then f(x1) must be close to 

the point on the tangent line, that is 

))(()()( 01001 xxxfxfxf   

This expression is called the linear 

approximation formula. 

Incremental Approximation 

We use the notation x for the difference 

01 xx   and the corresponding notation y 

for f(x1)  f(x0). Then the linear 

approximation formula can be written as 

xxfxfxf )()()( 001   

or equivalently 

0( )y f x x   
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Definition 2.2 

If f is differentiable and the increment x 

is sufficiently small, then the increment 

y, in y, due to an increment of x, in x is 

given by 

x
dx

dy
y    

or xxff  )(  

 

Note 

This version of approximation is 

sometimes called the incremental 

approximation formula and is used to 

study propagation of error. 
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The Differential 

dx is called the differential of x and we 

define dx to be x, an arbitrary increment 

of x. Then, if f is differentiable at x, we 

define the corresponding differential of y, 

dy as 

dx
dx

dy
dy   

or equivalently dxxfdf )(  

 

Thus, we can estimate the change  f,  in  f 

by the value of the differential  df  provided 

dx  is the change in x. 

dff   
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 dxx   

 y is the rise of f (the change in y) that 

occurs relative to dxx   

 dy is the rise of tangent line relative to 

dxx   

The true change: )()( 00 xfxxff    

The differential estimate: dxxfdf )(  

x0 + x  x0 

 f 

y 

dy 
 P  f(x0) 

 f(x0 + x) 

T 

x = dx 
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2.2.2 Functions of Two Variables 

Let ),( yxfz  , where x and y are 

independent variables. 

If x is subject to a small increment (or a 

small error) of x, while y remains 

constant, then the corresponding 

increment of z in z will be 

z
z x

x


  


 

Similarly, if y is subject to a small 

increment of y, while x remains constant, 

then the corresponding increment of z in z 

will be 

z
z y

y


  


 

It can be shown that, for increments (or 

errors) in both x and y, 

z z
z x y

x y

 
    

 
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The formula for a function of two 

variables may be extended to functions of 

a greater number of independent variables. 

For example, if ),,( zyxfw   of three 

variables, then 

w w w
w x y z

x y z

  
      

  
 

Definition 2.3 

Let ),( yxfz   where f is a differentiable 

function and let dx and dy be independent 

variables. The differential of the dependent 

variable, dz is called the total differential 

of z is defined as 

dyyxfdxyxfyxdfdz yx ),(),(),(   

Thus, dzz   provided dx is the change 

in x and dy is the change in y. 
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Example 2.9 

Let 332),( yxyxyxf  . Compute z 

and dz as (x, y) changes from (2, 1) to  

(2.03, 0.98). 

Solution 

z = f(2.03, 0.98) f(2, 1) 

]1)1(2)2(2[

)98.0()98.0)(03.2()03.2(2

32

33




 

= 0.779062 

dyyxfdxyxfdz yx ),(),(   

yyxxyx  )3()6( 22   

At (2, 1) with x = 0.03 and y = 0.02, 

77.0)02.0)(1()03.0)(25( dz  
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Example 2.10 

A cylindrical tank is 4 ft high and has a 

diameter of 2 ft. The walls of the tank are 

0.2 in. thick. Approximate the volume of 

the interior of the tank assuming that the 

tank has a top and a bottom that are both 

also 0.2 in. thick. 

Solution 

WANT: interior volume of tank, V 

KNOW: radius, r = 12 in., height, h = 48 

in. 

dhVdrVdVV hr  ,   

dhdr  2.0  

Volume of tank, hrV 2  

rhVr 2   and  2rVh   

dhrdrrhdhVdrVV hr )()2( 2   
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Since r = 12 in., h = 48 in., and 

dhdr  2.0   we have, 

)2.0()12()2.0)(48)(12(2 2  V  

3in3.814  

Thus the interior volume of the tank is 

32 in4.900,203.814)48()12(  V  

 

Example 2.11 

Suppose that a cylindrical can is designed 

to have a radius of 1 in. and a height of 5 

in. but that the radius and height are off by 

the amounts dr = 0.03 and dh = 0.1. 

Estimate the resulting absolute, relative and 

percentage changes in the volume of the 

can. 
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Solution 

WANT: Absolute change, V dV  

Relative change, 
V dV

V V
 

Percentage change, 100
V

dV
 

Absolute change, 

dhrrhdrdhVdrVdV hr
22    

 2.0)1.0()1()03.0)(5)(1(2 2 

 

Relative change, 

04.0
)5()1(

2.02.0
22










hrV

dV
 

Percentage change, 

%410004.0100 
V

dV
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Example 2.12 

1. The dimensions of a rectangular block 

of wood were found to be 100 mm, 120 

mm and 200 mm, with a possible error 

of 5 mm in each measurement. Find 

approximately the greatest error in the 

surface area of the block and the 

percentage error in the area caused by 

the errors in the individual 

measurements. 

2. The pressure P of a confined gas of 

volume V and temperature T is given by 

the formula 







V

T
kP  where k is a 

constant. Find approximately, the 

maximum percentage error in P 

introduced by an error of %4.0  in 

measuring the temperature and an error 

of %9.0  in measuring the volume. 
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Example 2.13 

The radius and height of a right circular 

cone are measured with errors of at most 

3% and 2% respectively. Use differentials 

to estimate the maximum percentage error 

in computing the volume. 
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2.2.3 Exact Differential 

In general, an expression of the form, 

dyyxNdxyxM ),(),(   

is known as an exact differential if it is a 

total differential of a function f(x, y). 

Definition 2.4 

The expression 

dyyxNdxyxM ),(),(   

is an exact differential if 

dfdy
y

f
dx

x

f
NdyMdx 









  

Note 

The function f is found by partial 

integration. 



 37 

Test for Exactness 

The differential form NdyMdx   is exact if 

and only if 

x

N

y

M









 

By similar reasoning, it may be shown that 

dzzyxPdyzyxNdxzyxM ),,(),,(),,(   

is an exact differential when 

z

N

y

P









,    

x

P

z

M









,    

y

M

x

N









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Example – see illustration 



 1 

2.3 Chain Rule 

2.3.1 Partial Derivatives of 

Composite Functions 

Recall: The chain rule for composite 

functions of one variable 

If y is a differentiable function of x and x 

is a differentiable function of a parameter 

t, then the chain rule states that 

dt

dx

dx

dy

dt

dy
  

 The corresponding rule for two 

variables is essentially the same except 

that it involves both variables. 

Note 

The rule is used to calculate the rate of 

increase (positive or negative) of 

composite functions with respect to t. 



 2 

Assume that ),( yxfz   is a function of x 

and y and suppose that x and y are in turn 

functions of a single variable t, 

)(txx  ,   )(tyy   

Then ))(),(( tytxfz   is a composition 

function of a parameter t. 

Thus we can calculate the derivative 
dt

dz
 

and its relationship to the derivatives  

x

z



 , 
y

z



 , 
dt

dx
 and 

dt

dy
 is given by the 

following theorem. 

Theorem 2.1 

If ),( yxfz   is differentiable and x and y 

are differentiable functions of t, then z is a 

differentiable function of t and 

dt

dy

y

z

dt

dx

x

z

dt

dz










  
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Chain Rule – one parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

dy
 

Dependent 

variable 

Intermediate 

variable 

Independent 

variable 
t 

 y x 

dt

dx
 

x

z




 

y

z





 

),( yxfz   

dt

dy

y

z

dt

dx

x

z

dt

dz











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Chain Rule – one parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 dt

dz

z

w

dt

dy

y

w

dt

dx

x

w

dt

dw















  

x

w





 
z

w




 

dt

dz
 

dt

dy
 

 y 

y

w




 

Dependent 

variable 

Intermediate 

variable 

Independent 

variable 
t 

 z x 

dt

dx
 

),,( zyxfw 
 



 5 

Chain Rule – two parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
s

x

dx

dy

s

y

r

x

dx

dy

r

y


















,  

s

x




 

r s 

dx

dy
 

x 

r

x




 

)(xfy 
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Theorem 2.2 

Let ),( srxx   and ),( sryy   have 

partial derivatives at r and s and let 

),( yxfz   be differentiable at (x, y). 

Then )),(),,(( srysrxfz   has first 

derivatives given by 

r

y

y

z

r

x

x

z

r

z
























 

s

y

y

z

s

x

x

z

s

z
























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Example 2.14 

Suppose that yxz 3  where tx 2  and 

2ty  . Find 
dt

dz
. 

Solution 

WANT: 
dt

dy

y

z

dt

dx

x

z

dt

dz










  

yxz 3    yx
x

z 23



  and 3x

y

z





 

tx 2      2
dt

dx
 

2ty       t
dt

dy
2  

Hence, 
dt

dy

y

z

dt

dx

x

z

dt

dz










  

)2)(()2)(3( 32 txyx   

4322 40)2()2()()2(6 ttttt   
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Example 2.15 

Suppose that yxyz   where 

cosx  and siny . Find 
d

dz
 when 

2


   

Solution 

WANT: 
2 d

dz
 

From the chain rule with  in place of t, 

 d

dy

y

z

d

dx

x

z

d

dz










  

we obtain 

))(cos1()(
2

1

)sin)(()(
2

1

21

21














xyxy

yyxy
d

dz
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When 
2


  , we have 

0
2

cos 


x  and 1
2

sin 


y  

Substituting x = 0, y = 1, 
2


   in the 

formula for 
dt

dz
 yields 

2

1
)0)(1)(1(

2

1
)1)(1)(1(

2

1

2


d

dz
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Example 2.16 

Let 24 yxz   where x = uv2 and  

y = u3v. Find 
u

z




 and 

v

z




. 
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Example 2.16a 

Suppose that yzxyw   where y = sin x 

and xez  . Use an appropriate form of 

the chain rule to find 
dx

dw
. 
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Example 2.17 

Find 
s

w




 if 324 zyxw   where 

2rsex  , 
t

sr
y


 ln  and z = rst2. 
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2.3.2 Partial Derivatives of 

Implicit Functions 

The chain rule can be applied to implicit 

relationships of the form 0),( yxF . 

Differentiating 0),( yxF  with respect 

to x gives  

0









dx

dy

y

F

dx

dx

x

F
 

In other words, 0









dx

dy

y

F

x

F
 

Hence,  
yF

xF

dx

dy




  

In summary, we have the following results. 

Theorem 2.3 

If 0),( yxF  defines y implicitly as a 

differentiable function of x, then 

y

x

F

F

dx

dy 
  
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Theorem 2.3 has a natural extension to 

functions ( , )z f x y , of two variables. 

Theorem 2.4 

If 0),,( zyxF  defines z implicitly as a 

differentiable function of x and y, then 

z

x

F

F

x

z 





   and    

z

y

F

F

y

z 





 

 

Example 2.18 

If y is a differentiable function of x such 

that 

034 223  yxyyxx  

find 
dx

dy
. 



 14 

Solution 

KNOW: 
y

x

F

F

dx

dy 
  

Let 223 34),( yxyyxxyxF  . Then 

yxyxFx 383 2   

and  yxxFy 234 2   

yxx

yxyx

F

F

dx

dy

y

x

234

)383(
2

2







  

Alternatively, differentiating the given 

function implicitly yields 

0233483 22 


















dx

dy
y

dx

dy
xy

dx

dy
xxyx  

yxx

yxyx

dx

dy

234

)383(
2

2




  

which agrees with the result obtained by 

Theorem 2.3. 
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Example 2.19a 

If yyxyx  )cos()sin(  determine 

dx

dy
. 
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Example 2.19b 

If 2 2 2 2 5z xy zy x x y     determine 

expressions for 
z

dx


 and 

z

dy


. 
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2.5 Local Extrema 

Focus of Attention 

 What is the relative extremum of a function 

of two variables? 

 What does a saddle point mean? 

 What is a critical point of a function of two 

variables? 

 What derivative tests could be used to 

determine the nature of critical points? 

In this section we will see how to use partial 

derivatives to locate maxima and minima of 

functions of two variables. 

First we will start out by formally defining local 

maximum and minimum: 

Definition 2.5 

A function of two variables has a local 

maximum at (a, b) if ( , ) ( , )f x y f a b  when (x, y) 

is near (a, b). The number ( , )f a b  is called a local 

maximum value. 

If ( , ) ( , )f x y f a b  when (x, y) is near ( , )a b , then 

( , )f a b  is a local minimum value. 
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Note 

 The points (x, y) is in some disk with center 

(a, b). 

 Collectively, local maximum and minimum 

are called local extremum. 

 Local extremum is also known as relative 

extremum. 

The process for finding the maxima and minima 

points is similar to the one variable process, just 

set the derivative equal to zero. However, using 

two variables, one needs to use a system of 

equations. This process is given below in the 

following theorem: 

Theorem 2.5 

If f  has a local maximum or minimum at (a, b) 

and the first-order partial derivatives of f  exist at 

this point, then ( , ) 0xf a b  and ( , ) 0yf a b . 
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Definition 2.6 

A point (a, b) is called a critical point of the 

function ( , )z f x y  if ( , ) 0xf a b  and ( , ) 0yf a b  

or if one or both partial derivatives do not exist at 

(a, b). 
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Relative Max 

 
Point ( , , ( , ))a b f a b  is a local maximum 

Relative Min. 

 
Point ( , , ( , ))a b f a b  is a local minimum 

Saddle Point 
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Point ( , , ( , ))a b f a b  is a saddle point 

Remark 

The values of z at the local maxima and local 

minima of the function ( , )z f x y  may also be 

called the extreme values of the function, ( , )f x y . 

Example 2.33 
Discuss the nature of the 

critical point for the 

following surfaces: 

i. 2 2z x y  

ii. 2 2 1z x y  

iii. 2 2z y x  

Prompts/Questions 
 Where can relative 

extreme values of 

( , )f x y  occur? 

o What are critical 

points? 

 How do you decide the 

nature of critical points?    
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Solution 

Let 2 2( , )f x y x y ,  2 2( , ) 1g x y x y  and  
2 2( , )h x y y x . We find the critical points: 

a) ( , ) 2xf x y x ,   ( , ) 2yf x y y  

Thus the critical point is (0, 0). The function f 

has a local minimum at (0, 0) because 2x  and 
2y  are both nonnegative, yielding 2 2 0x y . 

b) ( , ) 2xg x y x ,   ( , ) 2yg x y y  

Thus the critical point is (0, 0). The function g 

has a local maximum at (0, 0) because 
2 21z x y  and 2x  and 2y  are both 

nonnegative, so the largest value z occurs at  

(0, 0). 

c) ( , ) 2xh x y x ,   ( , ) 2yh x y y  

Thus the critical point is (0, 0). The function h 

has neither a local maximum nor a local 

minimum at (0, 0). h is minimum on the y-axis 

(where x = 0) and a maximum on the x-axis 

(where y = 0). Such point is called a saddle 

point. 
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Note 

 In general, a surface ( , )z f x y  has a saddle 

point at (a, b) if there are two distinct vertical 

planes through this point such that the trace of 

the surface in one of the planes has a local 

maximum at (a, b) and the trace in the other 

has a local minimum at (a, b). 

 Example 2.20 (c) illustrates the fact that 

( , ) 0xf a b  and ( , ) 0yf a b  does not guarantee 

that there is a local extremum at (a, b). 

The next theorem gives a criterion for deciding 

what is happening at a critical point. This 

theorem is analogous to the Second Derivative 

Test for functions of one variable. 

Theorem 2.11 Second-Partials Test 

Let ( , )f x y  have a critical point at (a, b) and 

assume that f  has continuous second-order partial 

derivatives in a disk centered at (a, b). Let 

2( , ) ( , ) [ ( , )]xx yy xyD f a b f a b f a b  
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(i) If D > 0 and ( , ) 0xxf a b , then f  has a local 

minimum at (a, b). 

(ii) If D > 0 and ( , ) 0xxf a b , then f  has a local 

maximum at (a, b). 

(iii) If D < 0, then f  has a saddle point at (a, b). 

(iv) If D = 0, then no conclusion can be drawn. 
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Remark 

The expression 2
xx yy xyf f f  is called the 

discriminant or Hessian of f. It is sometimes 

easier to remember it in the determinant form, 

2 xx xy

xx yy xy
xy yy

f f
f f f

f f
 

If the discriminant is positive at the point (a, b), 

then the surface curves the same way in all 

directions: 

 downwards if 0xxf , giving rise to a local 

maximum 

 upwards if ( , ) 0xxf a b , giving a local 

minimum. 

If the discriminant is negative at (a, b), then the 

surface curves up in some directions and down in 

others, so we have a saddle point. 

Illustration 

Finding relative extrema  

 using first partial derivative 

 using second partial derivative 
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Example 2.34 

Locate all local extrema and saddle points of 
2 2( , ) 1f x y x y . 

Solution 

 First determine fx and fy: 

( , ) 2xf x y x  and ( , ) 2yf x y y . 

 Secondly, solve the equations,  

fx = 0 and fy = 0 for x and y: 

2 0x    and   2 0y  

So the only critical point is at (0, 0). 

 Thirdly, evaluate fxx , fyy and fxy at the critical 

point. 

( , ) 2xxf x y , ( , ) 0xyf x y  and ( , ) 2yyf x y  

At the point (0, 0), 

(0,0) 2xxf ,   (0,0) 0xyf    and 

(0,0) 2yyf  

 Compute D: 
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2 0
4

0 2
D  

Since D = 4  > 0 and 2)0,0( xxf  < 0, the 

second partials test tell us that a local maximum 

occurs at (0, 0). 

In other words, the point (0, 0, 1) is a local 

maximum, with f  having a corresponding 

maximum value of 1. 

Example 2.35 

Locate all local extrema 

and saddle points of 
3 3( , ) 8 24f x y x xy y   . 

Prompts/Questions 
 What are the critical 

points? 

o How are they 

calculated? 

 How do you classify 

these points? 

o Can you use the 

Second Derivative 

Test? 

Solution 

224 24xf x y ,   224 3yf x y  

 Find the critical points, solve 
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224 24 0x y                              (1) 

224 3 0x y                             (2) 

From Eqn. (1), 
2xy  . Substitute this into Eqn. 

(2) to find 

2 224 3( ) 0x x  

0,2x  

If x = 0, then y = 0 

If x = 2, then y = 4 

So the critical points are (0, 0), (2, 4). 

 Find fxx , fyy and fxy and compute D: 

( , ) 48xxf x y x , ( , ) 24xyf x y  and 

( , ) 6yyf x y y . 

48 24
288 576

24 6

xx xy

xy yy

f f x
D xy

yf f
 

 Evaluate D at the critical points: 

At (0, 0), D = 576  < 0, so there is a saddle 

point at (0, 0). 

At (2, 4), D = 288(2)(4)-576 = 1728  > 0 
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and fxx(2, 4) = 48(2) = 96  > 0. So there is a local 

minimum at (2, 4). 

Thus f  has a saddle point (0, 0, 0) and local 

minimum (2, 4, 64). 

Example 2.36 
Find the local extreme 

values of the function. 

(i) 2 4( , )f x y x y  

(ii) 3 3( , )h x y x y   

Prompts/Questions 

 What are the critical 

points? 

 Can you use the second 

partials test? 

o What do you do when 

the test fails? 

 How does the function 

behave near the critical 

points? 
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Solution 

(i) The partial derivatives of f are 42xf xy ,   
2 34yf x y . 

Solving 0xf  and 0yf  simultaneously, we 

note that the critical points occurs whenever 

0x  or 0y . That is every point on the x or  

y – axis is a critical point. 

So, the critical points are ( , )x o  and (0, )y . 

Using the Second Derivative Test: 

4 3

2 6 2 6
3 2 2

2 6

2 8
24 64

8 12

40

y xy
D x y x y

xy x y

x y

 

For any critical point 0( ,0)x  or 0(0, )y , the second 

partials test fails. 

Let’s analyse the function. Observed that 

( , ) 0f x y  for every critical point (either 0x  or 

0y  or both. Since 2 4( , ) 0f x y x y  when 0x  

and 0y , it follows that each critical point must 

be a local minimum. 
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The graph of f is shown below. 

 

Graph of 2 4( , )f x y x y  

 

 y 
 x 

 z 
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(ii) 2( , ) 3xh x y x ,   2( , ) 3yh x y y . Solving the 

equations hx = 0 and hy = 0 simultaneously, we 

obtain (0, 0) as the only critical point. 

The second partials test fails here. Why? 

Let us examine the traces on the coordinate 

planes… finish it off 

 

 

 

Graph of 3 3( , )h x y x y  

( , )h x y  has neither kind of local extremum nor a 

saddle point at (0, 0). 
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Reflection 

 What can you say about the partial 

derivatives of a differentiable function at a 

local (relative) maximum or minimum? 

……………………………………………………

……………………………………………............ 

 How do you find the points for where a local 

(relative) maximum or minimum might be 

located? Saddle point? 

……………………………………………………

……………………………………………............ 

 What is the second derivative test? 

…………………………………………………… 

…………………………………………………… 

 What do you do if the second partials test is 

inconclusive? 

……………………………………………………

……………………………………………............ 
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2.6 Absolute Extrema 

Focus of Attention 

 Where can absolute extreme values of 

( , )f x y  occur? 

 Under what circumstances does a function 

of two variables have both an absolute 

maximum and an absolute minimum? 

 What is the procedure for determining 

absolute extrema? 

The only places a function ( , )f x y  can ever 

have an absolute extremum value are 

 interior critical points  

 boundary points of the function’s 

domain 

Theorem 2.12 Extreme-Value 

Theorem 

If ( , )f x y  is continuous on a closed 

bounded region R, then f  has an absolute 

extremum on R. 
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Theorem 2.13 

If ),( yxf  has an absolute extremum at an 

interior point of its domain, then this 

extremum occurs at a critical point. 

Note 

Absolute extremum is also known as 

global extremum. 

Finding Absolute Extrema 

Given a function f  that is continuous on a 

closed, bounded region R: 

Step 1: Find all critical points of f  in the 

interior of R. 

Step 2: Find all boundary points at 

which the absolute extrema can occur 

(critical points, endpoints, etc.) 

Step 3: Evaluate ( , )f x y  at the points 

obtained in the preceding steps. 



 19 

The largest of these values is the absolute 

maximum and the smallest is the absolute 

minimum. 
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Illustration 

Finding absolute extrema on closed and 

bounded region 

 Critical points & boundary points 

 Absolute extreme values – smallest & 

largest values 

Example 2.37 
Find the absolute 

extrema of the function 
2 2( , )f x y x y  over 

the disk 2 2 1x y  . 

Prompts/Questions 
 Where can absolute 

extreme occur? 

o What are the critical 

points? 

o What are the boundary 

points? 

 How do you decide there 

is an absolute minimum? 

Absolute maximum?   

Solution 

Step 1: 
22 yx

x
f x


 ,  

22 yx

y
f y


  
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0xf  and 0yf  for all (x, y). But xf  

and yf  do not exist at (0, 0). Thus (0, 0) is 

the only critical point of f and it is inside 

the region. 

Step 2: Examine the values of f  on the 

boundary curve 122  yx . Because 
22 1 xy   on the boundary curve, we 

find that 

1)1(),( 22  xxyxf  

That is, for every point on the boundary 

circle, the value of f  is 1. 

Step 3: Evaluating the value of f  at each 

of the points we have found: 

Critical point: f(0, 0) = 0 

Boundary points: 1),( yxf  

We conclude that the absolute minimum 

value of f  on R is 0 and the absolute 

maximum value is 1. 
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Example 2.38 
Find the absolute 

extrema of the function 

( , ) 3 6 3 7f x y xy x y     

on the closed triangular 

region in the first 

quadrant bounded by the 

lines 0 , 0x y  , 

5
5

3
y x   . 

Prompts/Questions 

 Where can absolute 

extreme occur? 

o Can you find the 

points? 

 How do you determine 

the absolute maximum? 

Absolute minimum?    
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Solution 

The region is shown in the figure. 

 

 

 

 

 

 

Critical points: 

063  yf x ,   033  xf y  

(1, 2) is the only critical point in the 

interior of R. 

Boundary points: 

The boundary of R consists of three line 

segments. We take one side at a time. 

 

 

A(3, 0) (0, 0) 

B(0, 5) 

R 
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Graph of 7363),(  yxxyyxf  
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 On the segment OA, 0y . 

The function ),( yxf  simplifies to a 

function of single variable x 

76)0,()(  xxfxu ,   30  x  

This function has no critical numbers 

because 6)(  xu  is nonzero for all x. 

Thus the extreme values occur at the 

endpoints (0, 0) and (3, 0) of R. 

 On the segment OB, 0x . 

( ) (0, ) 3 7v y f y y    ,   50  y  

This function has no critical numbers 

because ( ) 3v y    is nonzero for all y. 

Thus the extreme values occur at the 

endpoints (0, 0) and (0, 5) of R. 

 Segment AB: we already accounted the 

endpoints of AB, so we look at the 

interior points of AB. 
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With 5
3

5
 xy , we have 

75
3
5

365
3
5

3)( 






 






  xxxxxw  

8145 2  xx ,   30  x  

Setting 1410)(  xxw  = 0 gives 

57x . The critical number is )38,57( . 

Evaluating the value of f for the points we 

have found: 

(0, 0) f(0, 0) = 7 

(3, 0) f(3, 0) = 11 

(0, 5) f(0, 5) = 8 

)38,57(  )38,57(f  = 9/5 

(1, 2) f(1, 2) = 1 

We conclude that the absolute maximum 

value of f  is f(0, 0) = 7 and the absolute 

minimum value is f(3, 0) = 11. 
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Example 2.39 

Find the shortest distance from the point 

(0, 3, 4) to the plane 52  zyx . 

Solution 

KNOW: the distance from a point 

),,( zyx  to (0, 3, 4) is 

222 )4()3()0(  zyxd  

WANT: to minimise d 

Let ),,( zyx  be a point on the plane 

52  zyx . We know 

yxz 25   

So 222 )425()3(  yxyxd  

Instead of d, we can minimize the 

expression 

2222 )21()3(),( yxyxyxfd   
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Find the critical values: 

0244)21(22  yxyxxfx  

010104)21(4)3(2  yxyxyf y
 

The only critical point is (5/6, 4/3). Also 

4xxf , 10yyf , 4xyf , so  D > 0 

which means there is a local minimum at 

(5/6, 4/3). 

This local minimum must also be the 

absolute minimum because there must be 

only one point on the plane that is closest 

to the given point. The shortest distance is, 

6

5

3

4
2

6

5
13

3

4

6

5
222






















 






d  

Note 

In general it can be difficult to show that a 

local extremum is also an absolute extremum. 

In practice, the determination is made using 

physical or geometrical considerations. 
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Example 2.40 

Suppose we wish to construct a 

rectangular box with volume 32 ft3. Three 

different materials will be used in the 

construction. The material for the sides 

cost RM1 per square foot, the material for 

the bottom costs RM3 per square foot, and 

the material for the top costs RM5 per 

square foot. What are the dimensions of 

the least expensive such box? 

Reflection 

 Where do absolute extreme values of 

( , )f x y  occur? 

………………………………………………

……………………………………………… 

 What are the conditions that guarantee a 

( , )f x y  has an absolute maximum and an 

absolute minimum? 

………………………………………………

……………………………………………… 
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 How do you find the absolute maximum or 

minimum value of a function on a closed 

and bounded domain? On an open or 

unbounded region? 

………………………………………………

……………………………………………… 

………………………………………………

……………………………………………… 

………………………………………………

……………………………………………… 
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