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Chapter 2: Partial Derivatives

2.1 Definition of a Partial
Derivative

e The process of differentiating a function
of several variables with respect to one of
its variables while keeping the other
variables fixed 1s called partial
differentiation.

e The resulting derivative is a partial
derivative of the function.

See 1llustration



As an 1llustration, consider the surface area of a
right-circular cylinder with radius r and height A:

T
N

N

We know that the surface area 1s given by

S =927r? +2xrh. This is a function of two
variables r and 4.

Suppose 7 1s held fixed while 4 1s allowed to
vary. Then,

= 277

s
dh

r const.

This is the “partial derivative of S with respect
to h”. It describes the rate with which a
cylinder’s surface changes 1f its height 1s
increased and its radius 1s kept constant.

Likewise, suppose £ 1s held fixed while 7 1s
allowed to vary. Then,



as

- = 47r 4+ 27h
dr

h const.

This 1s the “partial derivative of S with respect
to r”. It represents the rate with which the surface
area changes 1f its radius 1s increased and its
height 1s kept constant.

In standard notation, these expressions are
indicated by

S, =2mr, S, =4nr+2nh

Thus in general, the partial derivative of
z = f(x,y) with respect to x, is the rate at which z

changes in response to changes in x, holding y
constant. Similarly, we can view the partial
derivative of z with respect to y in the same way.

Note

Just as the ordinary derivative has different
interpretations in different contexts, so does a
partial derivative. We can interpret derivative as a
rate of change and the slope of a tangent line.



Recall: Derivative of a single variable f
is defined formally as,

f’()C) — lim f(x + A)C) B f(.X)

Ax—>0 Ax

The definition of the partial derivatives with
respect to x and y are defined similarly.

Definition 2.1

If z = f(x, V), then the (first) partial

derivatives of f with respect to x and y
are the functions f, and f, respectively

defined by

f(x+Ax,y)—f(x,y)

= i
I Axlglo Ax
. f(xay_l_Ay)_f(x:y)
= 1
/s Ayn—lgo Ay

provided the limits exist.



2.1.1 Notation

For z = f(x, y), the partial derivatives f,
and f, are also denoted by the symbols:

of 0z 6
ox’ Ox’

of 0z 0O
ay’ ay’ ay f(xa y)a fy(x, y) or Zy

S y), fo(xy) or 2,

The values of the partial derivatives at the
point (a, b) are denoted by

of of
helil = f.(a,b) and =- = f (a,b)
OX | 4. 1) OV lapy 7
Note

e The stylized “d” symbol in the notation
is called roundback d, curly d or del d.

e [t is not the usual derivative d (dee) or
o (delta d).



Illustration
e Finding and evaluating partial derivative of a
function of two variables
¢ Finding partial derivative of a function of
three variables
¢ Finding partial derivative of an implicitly
defined function

Example 2.7 Prompts/Questions

If e What do the

flz,y)= x3y + x2y2 + 4z, notations stand for?

find o Which variable is
of .. df . changing?

Logz gy 180 =2) 1 5 Which variable is
held constant?
e Which variables give
the value of a
derivative?




Solution

(a) For f, hold y constant and find the
derivative with respect to x:

0 0

a—]; = 5 x?’y + x2y2 = 3x2y + 2xy2 + 4

(b) For f , hold x constant and find the
derivative with respect to y:

af 9 3 2.2 _ 3 2
ay—a—ymy+xy =x° + 227y

(©) f£,(1,-2)=(1)" +2(1)°(-2) = -3



For a function f(x, y, z) of three variables,
there are three partial derivatives:

foo fy and f;

The partial derivative f 1s calculated by
holding y and z constant. Likewise, for f,

and f,.

Example 2.2

Let f(x,vy,2) = X+ 2xy2 + yz3, find.:
(@) fx (b) f, (c) [,
Solution

(@) fo(x, y,2) = 2x + 2y°
(b) f,(x,y,2) = dxy + 2°

(c) f,(x,y,2) =3yz°



The rules for differentiating functions of a
single variable holds 1n calculating partial
derivatives.

Example 2.3

Find g]; if f(x,y) =In(x+ y).

Solution

We treat x as a constant and f as a
composite function:

of

oy = ay[ln(X+y)] x+yay(X+y)
= (0+1)
1

X+ Yy

10



Example 2.3a

Determine the partial derivatives of the
following functions with respect to each
of the independent variables:

(a) 2=(x" +3y)

(b) W = Ze3x—7y

11



Example 2.3b

Determine the partial derivatives of the
following functions with respect to each
of the independent variables:

a) 7 = xsin(2)c2 + 5y)

_ 2y
b)f(xay)_y_l_cosx

12



Example 2.4

If z = f(x* + y*), show that
07 0z _

xa—y—yg—o

13



Example 2.5

Find % if the equation

vz—Inz=x+y

defines z as a function of two independent
variables x and y.

Solution

We differentiate both sides of the equation
with respect to x, holding y constant and
treating z as a differentiable function of x:

6

®,
2: (%)~ 3 (h1 2) =7 () + o (y)
@ _loz _
i A 1+ 0, vyconstant
07
(r-3)5 -
0z _ Z

ox yz -1

14



Example 2.5a
If
cos(x+22)+3y° +2xyz =0

defines z as a function of two independent
variables x and y. Determine expressions

for 92 and 92 in terms of X,y and z.
Ox oy

15



2.1.2

Partial Derivative as a Slope

To understand the concept let’s take a
look at the one-variable case:

f(x + Ax)

Jx)

Curve C

Secant

Tangent line

At P, the tangent line to the curve C has
slope f'(x).

16



A Vertical axis in
~the plane y = y,

P(xg, yo,f(xg, ¥0))

z=f(x,y)
The curve z = f(x, y;)

in the plane y = y,

Tangent line

—=i \\\ g Yo
x/ /
/ (x07y0) ¥
(X0+ h, yo)

Horizontal axis in the plane y = y,

The intersection of the plane y = y, with the
surface z = f(x,vy).

17


fx is a slope of tangent line parallel to x-axis




S Vertical axis
in the plane
X = XO

A/
Tangent linz\

> 2N

P(xg, y0,f (X0, ¥0))

z2=f(x,y)

(X0, Yo)
(XO, yo . E k)

N\

Horizontal axis
in the plane x = x|,

The curve z = f(xy, y)
in the plane
X = XO

The intersection of the plane x = x,, with the
surface z = f(x,vy).

18


fy is a slope of tangent line parallel to y-axis





Example 2.6

Find the slope of the line that 1s parallel to
the xz-plane and tangent to the surface

Z = X+/x + y at the point P(l, 3, 2).
Solution

Given f(x,y) = XX+ Y

WANT: £ (1,3)

fulx) = G+ )" x4 0720+ 0

X

2x+ Y

Thus the required slope,

= Jx+y+

1 O
1,3) = V1+3 + =2
f:(1,3) 2J1+3 4

19



2.1.3 Partial Derivative as a Rate
of Change

The derivative of a function of one
variable can be interpreted as a rate of
change. Likewise, we can obtain the
analogous interpretation for partial
derivative.

¢ A partial derivative 1s the rate of
change of a multi-variable function
when we allow only one of the
variables to change.

of

¢ Specifically, the partial derivative F

at (xy, yo) gives the rate of change of f
with respect to x when y 1s held fixed at

the value y,.

20



Example 2.7

The volume of a gas 1s related to its
temperature T and 1ts pressure P by the
gas law PV = 10T, where V 1s measured
in cubic inches, P in pounds per square
inch, and T in degrees Celsius. If T 1s kept
constant at 200, what 1s the rate of change

of pressure with respect to volume at
V =507

Solution
OP
WANT: —
OV |1-200,v =50
Given PV =10T.
P _ —10T
oV V2
o op _(-10)(200) _ 4
8‘/ T7=200,V=50 (50)2 5

21



2.1.4 Higher Order Partial
Derivatives

The partial derivative of a function is a
function, so 1t 1s possible to take the
partial derivative of a partial derivative.

If z is a function of two independent
variables, x and y, the possible partial
derivatives of the second order are:

¢ second partial derivative — taking two
consecutive partial derivatives with
respect to the same variable

¢ mixed partial derivative - taking
partial derivatives with respect to one
variable, and then take another partial
derivative with respect to a different
variable

22



Standard Notations
Given z = f(x, y)

Second partial derivatives

2
o L-2(Z)- 0t

Ox”
o'f _ o (of)_ _
oy’ _ay(ay)_(fy)y_fyy

Mixed partial derivatives

o°f _o(of)_ _
axay o ax(ay) - (fy)x_ fyx

O°f _0(0f\_ sy
Oydx Oy (@C) ~ )y = Iy

23



Remark

¢ The mixed partial derivaties can give
the same result whenever f, f., f,, fu
and f,, are all continuous.

¢ Partial derivaties of the third and
higher orders are defined analogously,
and the notation for them is similar.

Of _ 0 6(8f) _
oxdy? Ox[Oy\ Oy P

o0'f _ oo a(af) ey
ox2oy>  Ox\ x| dy\dy yyxx

The order of differentiation 1s
immaterial as long as the derivatives
through the order in question are
continuous.

24



Example 2.8 Prompts/Questions
Let z = 72° — 5%y + 6y°. | ® What do the notations
Find the indicated partial | represent?
derivatives. e What is the order of
. 0%z 0%z differentiation?
1. 0x0y 11 Oyox o With respect to
2 which variable do
iii. 5. 2y (2,1) you differentiate
u first?
Solution
Keeping y fixed and differentiating w.r.t. x, we
obtain % = 212* —10zy.
Keeping x fixed and differentiating w.r.t. y, we
obtain g—z — — 5% +18¢°.
. 0’2 9 (0z) 0
1) 0xdy 8$[3y] Gx( 52 +18y") =~ 10z

2
0z _ 0 [82] 0 (212* —10zy) =—10z

(1) Oyox ~ Oy|Oz| Oy

2
(111) ng — aaa;[gj ;x(m —102y) =427 — 10y

25



0%~

(1v) fxy(Qal):ayal, =—10(2)=-20
(2,1)
Example 2.9 Prompts/Questions
Determine all first and  What are the first
second order partial partial derivatives of f?

o Which derivative
rules or techniques
do you need?

derivatives of the
following functions:

1. 2z = ysinx + x cos
Y + 4 e How many second-

.o oy
1. 2 =€ (237 — y) N order derivatives are
iii. f(.fC,y) :.CCCOSy_l_ye there?

26



2.2 Increments and Differential

2.2.1 Functions of One Variable -
A Recap

Tangent Line approximation

f

Jfxr)

J(xo)

If f1s differentiable at x = x,, the tangent
line at P(x,, f(x,)) has slope m = f'(x,)
and equation

y = flxo) + f'(x)(x — xo)

22



If x; 1s near x,, then f(x;) must be close to
the point on the tangent line, that 1s

F(x) = f(xg)+ f'(x0)(x = xp)

This expression 1s called the linear
approximation formula.

Incremental Approximation

We use the notation Ax for the difference
x; — X and the corresponding notation Ay

for f(x;) — f(xp). Then the linear
approximation formula can be written as

F(x) = f(x) = f(xp)Ax
or equivalently

Ay =~ f’(xo)Ax

23



Definition 2.2

If f1s differentiable and the increment Ax
1s sufficiently small, then the increment

Ay, 1n y, due to an increment of Ax, 1n x 1s
given by

Note

This version of approximation 1s
sometimes called the incremental
approximation formula and is used to
study propagation of error.

24



The Differential

dx 1s called the differential of x and we

define dx to be Ax, an arbitrary increment
of x. Then, 1if f1s differentiable at x, we
define the corresponding differential of y,
dy as

dy = %dx

or equivalently df = f'(x)dx

Thus, we can estimate the change Af, in f
by the value of the differential df provided
dx 1s the change 1n x.

Af =~ df

25



Sflxo + Ax)

> Ay

f(xo)

¢ Ax = dx

¢ Ay 1s the rise of f(the change 1n y) that
occurs relative to Ax = dx

¢ dy 1s the rise of tangent line relative to
Ax = dx

The true change: Af = f(xy, + 4x) — f(xy)

The differential estimate: df = f'(x)dx

26



2.2.2 Functions of Two Variables

Let z = f(x, y), where x and y are
independent variables.

If x 1s subject to a small increment (or a

small error) of Ax, while y remains
constant, then the corresponding

increment of Az in z will be

0
A7 =~ e Ax
Ox
Similarly, 1f y 1s subject to a small
increment of Ay, while x remains constant,

then the corresponding increment of Az in z
will be

It can be shown that, for increments (or

errors) in both x and vy,
07 07
Az~ —Ax+—A
Ox oy d

27



The formula for a function of two
variables may be extended to functions of
a greater number of independent variables.

For example, if w = f(x, y, z) of three
variables, then

Aw = a—WAx—ka—wAy—k@—wAz
OxX oy 07

Definition 2.3

Let z = f(x, y) where f1s a differentiable

function and let dx and dy be independent
variables. The differential of the dependent
variable, dz 1s called the total differential
of 7 is defined as

dz = df(x,y) = fo(x, y)dx + f,(x, y)dy

Thus, Az = dz provided dx 1s the change
in x and dy 1s the change 1n y.

28



FIGURE 12.26c¢
Tangent plane and normal vector
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Example 2.9

Let f(x,y) = 2x> + Xy — y3. Compute Az
and dz as (x, y) changes from (2, 1) to
(2.03, 0.98).

Solution
Az =£(2.03, 0.98) (2, 1)
= 2(2.03)° + (2.03)(0.98) — (0.98)°
—H2(2)* +2(1) - I°]
=(0.779062

dz = f.(x,y)dx+ f,(x, y)dy
= (6x2 + y)Ax + (x — 3y2)Ay

At (2, 1) with Ax = 0.03 and Ay = —0.02,
dz = (25)(0.03) + (=1)(=0.02) = 0.77

30



Example 2.10

A cylindrical tank 1s 4 ft high and has a
diameter of 2 ft. The walls of the tank are
0.2 1. thick. Approximate the volume of
the nterior of the tank assuming that the

tank has a top and a bottom that are both
also 0.2 1n. thick.

Solution
WANT: interior volume of tank, V
KNOW: radius, r = 12 in., height, h = 48

1.
AV ~ dV = V.dr + V,dh,
dr = -02 = dh

Volume of tank, V = 7r’h

= V. =2mwh and V, = o’

AV = V.dr + V,dh = Qmrh)dr + (7r*)dh

31



Since r = 12 1n., h =48 1n., and
dr = —0.2 = dh we have,

AV = 27(12)(48)(=0.2) + 7(12)*(=0.2)
~ —814.31in°

Thus the interior volume of the tank is

V =~ 7(12)*(48) — 814.3 ~ 20,900.4 in°

Example 2.11

Suppose that a cylindrical can 1s designed
to have a radius of 1 1n. and a height of 5
in. but that the radius and height are off by
the amounts dr = 0.03 and dh = —0.1.
Estimate the resulting absolute, relative and
percentage changes in the volume of the
can.

32



Solution

WANT: Absolute change, AV ~dV

Relative change, AV 4V
V V

Percentage change, ci/_V x 100

Absolute change,
dV =V.dr + V,dh = 2rhdr + m*dh
= 27(1)(5)(0.03) + 7(1)*(=0.1) = 0.27

Relative change,

av _ 02z _ 027 _ 0.04

V. " m2h z(1)25)

Percentage change,

dV 100 = 0.04 x 100 = 4%

%

33



Example 2.12

1. The dimensions of a rectangular block
of wood were found to be 100 mm, 120
mm and 200 mm, with a possible error
of 5 mm in each measurement. Find
approximately the greatest error in the
surface area of the block and the
percentage error in the area caused by
the errors in the individual
measurements.

2. The pressure P of a confined gas of
volume V and temperature 7T 1s given by

the formula P = k(g) where k 1s a

constant. Find approximately, the
maximum percentage error in P
introduced by an error of & 0.4% 1n
measuring the temperature and an error
of £ 0.9% 1n measuring the volume.

34



Example 2.13

The radius and height of a right circular
cone are measured with errors of at most
3% and 2% respectively. Use differentials
to estimate the maximum percentage error
in computing the volume.

35



2.3 Chain Rule

2.3.1 Partial Derivatives of
Composite Functions

Recall: The chain rule for composite
functions of one variable

If y 1s a differentiable function of x and x
1s a differentiable function of a parameter
t, then the chain rule states that

dy _dy dx
dt dx dt

¢ The corresponding rule for two
variables 1s essentially the same except
that 1t involves both variables.

Note

The rule 1s used to calculate the rate of
increase (positive or negative) of
composite functions with respect to .



Assume that z = f(x, y) 1s a function of x

and y and suppose that x and y are in turn
functions of a single variable 7,

x=x(), y=y@)

Then z = f(x(¢), y(¢)) 1s a composition

function of a parameter t.
Thus we can calculate the derivative %

and its relationship to the derivatives

0z 0z dx 4 4) dy .

ox’ 8y’ dt dt
following theorem.

is given by the

Theorem 2.1

If z = f(x,y) is differentiable and x and y

are differentiable functions of 7, then z 1s a
differentiable function of # and

dz _ 0z dx_l_az.dy
dt Ox dt oy dt




Chain Rule - one parameter

z=f(x,y)

Dependent
variable

Intermediate
variable

Independent
variable

dt Ox dt 0y dt

dz_az.dx_i_az.dy




Chain Rule - one parameter

W = f(X, y, Z) Dependent
variable

Intermediate
variable

Independent
variable

dw _ Oow dx+6w dy ow dz

dt ~ Ox dt Oy dr 0z dt




Chain Rule - two parameters

y = f(x)

dy
dx

X

or dx Or’ Os dx Os

Oy _dy ox 0Oy _dy ox



Theorem 2.2

Let x = x(r,s) and y = y(r, s) have
partial derivatives at r and s and let

z = f(x,y) be differentiable at (x, y).
Then z = f(x(r,s), y(r, s)) has first

derivatives given by

0z _ 0z Ox 0z Oy

Or Ox Or 6y.6r

@zaz.aeraz,ay
Os Ox Os Oy Os




Example 2.14
Suppose that z = x’ y where x = 2¢ and

y=ﬂFM%%

Solution

N 8 085 0
z=x3y — % 3x yandgy
x=2t = % 2

y=t2 = %=2t

dz _ 0z dx 0z dy
Hence, dt  Ox dt+6y dt

= (3x%y)(2) + (x°)(2¢)

= 6(21)*(t%) + (21)° (21) = 40¢*

7



Example 2.15

Suppose that z = \/xy + y where

x =cosf and y = sin §. Find j_g when

_
9‘2

Solution

WANT:
dﬁ O=r/2

From the chain rule with &1in place of

dz _ 0z dx_l_az dy
a0~ ox a6 T oy a0

we obtain

9 =2 Gy + ) ()(=sin )

+ %(xy + )2 (x + )(cos 0)



When 0 = %, we have

= cos F = =gin % =
X = Cos > 0 and y Sin > 1

Substituting x=0,y=1, § = % in the

dz

fi |
ormula for 7

yields

dz 1 1 1
00, = 2 OOED + 5000 = -3



Example 2.16

Let z = 4x — y2 where x = uv” and
0z and 0z

y=uv. Find 3 3

10



Example 2.16a

Suppose that w = xy + yz where y = sin x
and z = e". Use an appropriate form of

the chain rule to find d_w
dx

10



Example 2.17

Fmd%—slfw 4x+y + z°> where

I”S

r+s
x=e" ,y=In and z = rst°.

11



2.3.2 Partial Derivatives of
Implicit Functions

The chain rule can be applied to implicit
relationships of the form F(x, y) = 0.

Differentiating F'(x, y) = 0 with respect
to x gives

OF dx OF dy

ax.a’x-l- Oy .dx=0
OF  OF dy _
In other words, 3 + By i 0
dy —OF/ox
Hence, dx  OF/0y
In summary, we have the following results.
Theorem 2.3

If F(x,y) = 0 defines y implicitly as a
differentiable function of x, then
dy _ F X

dx  F,

12



Theorem 2.3 has a natural extension to
functions z = f(x, y), of two variables.

Theorem 2.4

If F(x,y,z) =0 defines z implicitly as a
differentiable function of x and y, then

0z _ = Fi o: _ 5y
ox  F, and oy F,
Example 2.18

If y 1s a differentiable function of x such
that

x3+4x2y—3xy+y2=0

dy
find ™

13



Solution
— Fx

dx Fy

KNOW:

Let F(x,y) = x> + 4x*y — 3xy + y*. Then
F. =3x2+8xy—3y
and F, = 4x* —3x+ 2y

dy —F, —(3x" +8xy —3y)
dx I, 4x* —3x + 2y

Alternatively, differentiating the given
function implicitly yields

2 dy dy dy
3x° +(8xy+4x dx) (3y+3xdx)+2ydx 0

dy _ —(3x2 + 8xy — 3y)
dx 4x% —3x + 2y

which agrees with the result obtained by
Theorem 2.3.

14



Example 2.19a

If sin(x + y) + cos(x — y) = y determine
dy
dx

15



Example 2.19b

If 2°xy+ zy°x+ x>+ y° =5 determine
07 07

expressions for — and —.
dx dy

16



2.5 Local Extrema

Focus of Attention

> What is the relative extremum of a function
of two variables?

» What does a saddle point mean?

» What is a critical point of a function of two
variables?

» What derivative tests could be used to
determine the nature of critical points?

In this section we will see how to use partial
derivatives to locate maxima and minima of
functions of two variables.

First we will start out by formally defining local
maximum and minimum:

Definition 2.5

A function of two variables has a local
maximum at (a, b) if f(z,y)<f(a,b) when (x, y)
is near (a, b). The number f(a,b) is called a local
maximum value.

If f(z,y)>f(a,b) when (x, y) is near (a,b), then
f(a,b) is a local minimum value.



Note

» The points (x, y) is in some disk with center
(a, b).

» Collectively, local maximum and minimum
are called local extremum.

> Local extremum is also known as relative
extremum.

The process for finding the maxima and minima
points 1s similar to the one variable process, just
set the derivative equal to zero. However, using
two variables, one needs to use a system of
equations. This process 1s given below in the
following theorem:

Theorem 2.5

If f has a local maximum or minimum at (a, b)
and the first-order partial derivatives of f exist at
this point, then f,(a,b)=0 and f, (a,b)=0.



Definition 2.6

A point (a, b) is called a critical point of the
function 2= f(z,y) if f,(a,b)=0 and f (a,b)=0
or 1f one or both partial derivatives do not exist at
(a, b).




Relative Max
zp (a,b, f(a,b))

®50) @b
Point (a, b, f(a, b)) is a local maximum

Relative Min.

Point (a, b, f(a,b)) is a local minimum

Saddle Point



Point (a,b, f(a,b)) is a local minimum

Saddle Point

Point (a,b, f(a,b)) is a saddle point

Remark

The values of z at the local maxima and local
minima of the function z= f(x,y) may also be
called the extreme values of the function,

f(z,y).



Theorem 2 : Second-Partials Test
Let f(z,y) have a critical point at (a, b) and
assume that f has continuous second-order

partial derivatives in a disk centered at (a, b).
Let

D=1, (ab)f,,(ab)~[f,, (@)

(i) 1fD>0and f, (a,b)>0, then f has a local
minimum at (a, b).

(i) 1fD>0and f_(a,b)<0, then f has a local
maximum at (a, b).

(iii) If D<O0,then f has asaddle point at (g, b).

(iv) If D=0, then no conclusion can be drawn.



Remark

The expression f,. /., —fxy2 is called the

discriminant or Hessian of f. It is sometimes
easier to remember it in the determinant form,

facx fxy
ffl?y f@/y

If the discriminant is positive at the point (a, b),

Jewtyy _fny —

then the surface curves the same way in all
directions:

¢ downwards if f <0, giving rise to a local
maximum

¢ upwards if f_(a,b)>0, giving a local
minimum.

If the discriminant is negative at (a, b), then the
surface curves up in some directions and down
in others, so we have a saddle point.



Example 2.34

Locate all local extrema and saddle points of
f(x,y):1—$2 _y2°

Solution

¢ First determine f, and f,:

fx (xay) =—2z and fy (xay) :_Zy

¢ Secondly, solve the equations,
fi=0andf,=0 for x and y:

—2x=0 and —2y=0
So the only critical point 1s at (0, 0).

¢ Thirdly, evaluate f,, , f,, and f;, at the critical
point.

fro(@y)==2, f,,(z,y)=0 and [ (z,y)=—2
At the point (0, 0),

£ (0.0)==2, £,(0,0)=0 and

fyy (0,0)=—2

¢ Compute D:
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D=

Since D=4 >0and f,.(0,0) = =2 <0, the
second partials test tell us that a local maximum
occurs at (0, 0).

In other words, the point (0, 0, 1) 1s a local
maximum, with f having a corresponding
maximum value of 1.

Example 2.35 Prompts/Questions
Locate all local extrema  What are the critical
and saddle points of points? )

Ry 3 o How are they
f(2,y) = 82" = 24wy +y". calculated?

e How do you classify
these points?
o Can you use the
Second Derivative
Test?

Solution
f,=24z"—24y, f =—242+3y’

¢ Find the critical points, solve
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247% —24y=0 (1)

—24z+3y* =0 2)
From Eqn. (1), y = x*. Substitute this into Eqn.
(2) to find

—24z+3(z%)* =0

x=0,2

Ifx=0,theny=20

I[fx=2,theny=4

So the critical points are (0, 0), (2, 4).
¢ Findf,,, f,, and f,, and compute D:

fxx(may):48$9 fxy(x,y):—24 and
fy(,y)=06y.

f:z::z: fgL’y 4833 —24
fmy fyy —24 Gy

¢ Evaluate D at the critical points:

At (0,0), D=-576 <0, so there 1s a saddle
point at (0, 0).

At (2,4), D = 288(2)(4)-576 = 1728 >0

D= —2882y—576
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and f..(2, 4) =48(2) =96 > 0. So there 1s a local
minimum at (2, 4).

Thus f has a saddle point (0, 0, 0) and local
minimum (2, 4, —64).

Example 2.36 Prompts/Questions
Find the local extreme e What are the critical
values of the function. points?
: 2.4 e Can you use the second
(1) f(z,y) =27y partials test?
(i) h(z,y) = 2° +y° o What do you do when
the test fails?
e How does the function
behave near the critical
points?
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Solution
(1) The partial derivatives of fare f, = 221°,
fy = Aztys,
Solving f, = 0 and f, = 0 simultaneously, we

note that the critical points occurs whenever
x=0 or y=0. That 1s every point on the x— or
y — axis 1s a critical point.

So, the critical points are (z,0) and (0,y).

Using the Second Derivative Test:

D= = 24:62y6 —64:U2y6

= —4Ox2y6

For any critical point (x,,0) or (0,3, ), the second
partials test fails.

Let’s analyse the function. Observed that
f(x,y)=0 for every critical point (either z=0 or

y=0 or both. Since f(z,y)=x"y* >0 when z=0
and y=0, 1t follows that each critical point must
be a local minimum.
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The graph of f1s shown below.

)

Y

?

X

(

Graph of f
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(i) h, (z,y) = 327, h,(z,y) = 3y°. Solving the
equations s, = 0 and A, = 0 simultaneously, we
obtain (0, 0) as the only critical point.

The second partials test fails here. Why?

Let us examine the traces on the coordinate
planes... finish it off

S— =
Ss. aR AN
*i-“
ULy L

Graph of h(z,y)=z"> +y°

h(x,y) has neither kind of local extremum nor a
saddle point at (0, 0).
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Question

In equations 1 - 3, find critical points of f(x, y)
and determine whether f(x, y) at that point is

a local maximum or a local minimum, or the
value of the saddle point.

1. fay =3—2°—y* 46y
2. f x,y :x2+y2—4x+6y+23
3. fay =2 —y* +2x+6y—4
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