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Chapter 2: Partial Derivatives 

2.1 Definition of a Partial 
Derivative 

x The process of differentiating a function 
of several variables with respect to one of 
its variables while keeping the other 
variables fixed is called partial 
differentiation. 

x The resulting derivative is a partial 
derivative of the function. 

 

See illustration 



 3 

As an illustration, consider the surface area of a 
right-circular cylinder with radius r and height h: 
 
 
 
 
 
 
 
 
We know that the surface area is given by 

22 2S r rhp p . This is a function of two 
variables r and h. 
Suppose r is held fixed while h is allowed to 
vary. Then, 

 const.
2

r

dS r
dh

p  

This is the “partial derivative of S with respect 
to h”. It describes the rate with which a 
cylinder’s surface changes if its height is 
increased and its radius is kept constant. 

Likewise, suppose h is held fixed while r is 
allowed to vary. Then, 

h 

r 
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 const.
4 2

h

dS r h
dr

p p  

This is the “partial derivative of S with respect 
to r”. It represents the rate with which the surface 
area changes if its radius is increased and its 
height is kept constant. 

In standard notation, these expressions are 
indicated by 

2hS rp , 4 2rS r hp p  

Thus in general, the partial derivative of 
( , )z f x y  with respect to x, is the rate at which z 

changes in response to changes in x, holding y 
constant. Similarly, we can view the partial 
derivative of z with respect to y in the same way.  

Note 
Just as the ordinary derivative has different 
interpretations in different contexts, so does a 
partial derivative. We can interpret derivative as a 
rate of change and the slope of a tangent line. 
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Recall: Derivative of a single variable f 
is defined formally as, 

x
xfxxfxf

x '
'

'

)()(lim)(
0

�� c
o

 

The definition of the partial derivatives with 
respect to x and y are defined similarly. 

Definition 2.1 
If ),( yxfz  , then the (first) partial 
derivatives of  f  with respect to x and y 
are the functions  xf   and  yf   respectively 
defined by 

x
yxfyxxff

xx '
'

'

),(),(lim
0

�� 
o

 

y
yxfyyxff

yy '
'

'

),(),(lim
0

�� 
o

 

provided the limits exist. 
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2.1.1 Notation 
For ),( yxfz  , the partial derivatives xf  
and yf  are also denoted by the symbols: 

x
f
w
w

,  x
z
w
w ,  ),( yxfxw

w ,  ),( yxfx   or  xz  

y
f
w
w

,  y
z
w
w ,  ),( yxfyw

w ,  ),( yxf y   or  yz  

The values of the partial derivatives at the 
point (a, b) are denoted by 

),(
),(

bafx
f

x
ba

 
w
w   and  ),(

),(
bafy

f
y

ba
 

w
w  

Note 
x The stylized “d” symbol in the notation 

is called roundback d, curly d or del d. 
x It is not the usual derivative d (dee) or 

G (delta d). 
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Illustration 
x Finding and evaluating partial derivative of a 

function of two variables 
x Finding partial derivative of a function of 

three variables 
x Finding partial derivative of an implicitly 

defined function 

Example 2.7 
If 

3 2 2( , ) 4f x y x y x y x , 
find 

i.  fx   ii. fy  iii. (1, 2)yf �  

Prompts/Questions 
x What do the 

notations stand for? 
o Which variable is 

changing? 
o Which variable is 

held constant? 
x Which variables give 

the value of a 
derivative?   

 



 8 

Solution 

(a) For xf , hold y constant and find the 
derivative with respect to x: 

3 2 2 2 23 2 4f x y x y x y xyx x  

(b) For yf , hold x constant and find the 
derivative with respect to y: 

3 2 2 3 22f x y x y x x yy y  

(c) 3 2(1, 2) (1) 2(1) ( 2) 3yf  
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For a function ),,( zyxf  of three variables, 
there are three partial derivatives: 

xf ,   yf    and   zf  

The partial derivative xf  is calculated by 
holding y and z constant. Likewise, for yf  
and zf . 

Example 2.2 

Let 322 2),,( yzxyxzyxf �� , find: 

(a) xf   (b) yf  (c) zf  

Solution 

(a) 222),,( yxzyxfx �  

(b) 34),,( zxyzyxf y �  

(c) 23),,( yzzyxf z   
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The rules for differentiating functions of a 
single variable holds in calculating partial 
derivatives. 

Example 2.3 

Find y
f
w
w  if )ln(),( yxyxf � . 

Solution 

We treat x as a constant and  f  as a 
composite function: 

)(1)][ln( yxyyxyxyy
f �

w
w

�
 �

w
w 

w
w  

)10(1 �
�

 yx  

yx �
 1  
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Example 2.3a 
Determine the partial derivatives of the 
following functions with respect to each 
of the independent variables: 

(a) 
52 )3( yxz �  

(b) 
yxzew 73 �  
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Example 2.3b 
Determine the partial derivatives of the 
following functions with respect to each 
of the independent variables: 

a) )52sin( 2 yxxz �  

b) xy
yyxf cos

2),(
�
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Example 2.4 

If )( 22 yxfz � , show that 

0 
w
w�

w
w

x
zyy

zx  
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Example 2.5 

Find x
z
w
w  if the equation 

yxzyz � � ln  

defines z as a function of two independent 
variables x and y. 

Solution 
We differentiate both sides of the equation 
with respect to x, holding y constant and 
treating z as a differentiable function of x: 

)()()(ln)( yxxxzxyzx w
w�

w
w 

w
w�

w
w  

011 � 
w
w�

w
w

x
z

zx
zy ,      y constant 

11  
w
w

¸
¹
·¨

©
§ � x

z
zy  

1�
 

w
w? yz

z
x
z  
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Example 2.5a 
If 

023)2cos( 2  ��� xyzyzx  
defines z as a function of two independent 
variables x and y. Determine expressions 
for 

x
z
w
w  and 

y
z
w
w  in terms of x, y and z. 
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2.1.2 Partial Derivative as a Slope 
To understand the concept let’s take a 
look at the one-variable case: 

 

 

 

 

 

 

 

 

 
 
At P, the tangent line to the curve C has 
slope )(xf c . 

 P 

Curve C 

 f(x) 

 f(x + 'x) 

Tangent line 

Secant 

 x x + 'x 
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The intersection of the plane 0y y  with the 
surface ( , )z f x y . 
 

fx is a slope of tangent line parallel to x-axis
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The intersection of the plane 0x x  with the 
surface ( , )z f x y . 

 

fy is a slope of tangent line parallel to y-axis
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Example 2.6 
Find the slope of the line that is parallel to 
the xz-plane and tangent to the surface 

yxxz �  at the point )2,3,1(P . 

Solution 

Given ( , )f x y x x y �  

WANT: )3,1(xf  

)01()(2
1)(),( 2121 ��¸
¹
·¨

©
§�� �yxxyxyxfx  

yx
xyx
�

�� 
2

 

Thus the required slope, 

4
9

312
131)3,1(  
�

�� xf  
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2.1.3 Partial Derivative as a Rate 
of Change 
The derivative of a function of one 
variable can be interpreted as a rate of 
change. Likewise, we can obtain the 
analogous interpretation for partial 
derivative.  

i A partial derivative is the rate of 
change of a multi-variable function 
when we allow only one of the 
variables to change. 

i Specifically, the partial derivative x
f
w
w  

at ),( 00 yx  gives the rate of change of f 
with respect to x when y is held fixed at 
the value y0. 
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Example 2.7 
The volume of a gas is related to its 
temperature T and its pressure P by the 
gas law TPV 10 , where V is measured 
in cubic inches, P in pounds per square 
inch, and T in degrees Celsius. If T is kept 
constant at 200, what is the rate of change 
of pressure with respect to volume at 

50 V ? 

Solution 

WANT: 
50,200   w

w
VTV

P  

Given TPV 10 . 

2
10

V
T

V
P � 

w
w  

2
200, 50

( 10)(200) 4
(50) 5T V

P
V   

w �?   �
w
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2.1.4 Higher Order Partial 
Derivatives 

The partial derivative of a function is a 
function, so it is possible to take the 
partial derivative of a partial derivative. 
If z is a function of two independent 
variables, x and y, the possible partial 
derivatives of the second order are: 

i second partial derivative – taking two 
consecutive partial derivatives with 
respect to the same variable 

i mixed partial derivative - taking 
partial derivatives with respect to one 
variable, and then take another partial 
derivative with respect to a different 
variable 
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Standard Notations 
Given ),( yxfz   

Second partial derivatives 

2

2

x
f

w
w  = ¸

¹
·

¨
©
§
w
w

w
w

x
f

x  = xxf )(  = xxf  

2

2

y
f

w
w  = ¸

¹
·

¨
©
§
w
w

w
w

y
f

y  = yyf )(  = yyf  

Mixed partial derivatives 

yx
f
ww

w2
 = ¸

¹
·

¨
©
§
w
w

w
w

y
f

x  = xyf )(  = yxf  

xy
f
ww

w2
 = ¸

¹
·

¨
©
§
w
w

w
w

x
f

y  = yxf )(  = xyf  
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Remark 

i The mixed partial derivaties can give 
the same result whenever f,  fx,  fy,  fxy 
and  fyx   are all continuous. 

i Partial derivaties of the third and 
higher orders are defined analogously, 
and the notation for them is similar. 

2

3

yx
f

ww
w  = »¼

º
«¬
ª

¸
¹
·

¨
©
§
w
w

w
w

w
w

y
f

yx  = yyxf  

22

4

yx
f
ww

w  = ¸
¹
·

¨
©
§

»¼
º

«¬
ª

¸
¹
·

¨
©
§
w
w

w
w

w
w

w
w

y
f

yxx  = yyxxf  

The order of differentiation is 
immaterial as long as the derivatives 
through the order in question are 
continuous. 
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Example 2.8 
Let 3 2 37 5 6z x x y y � � . 
Find the indicated partial 
derivatives. 

i.  
2z
x y        ii. 

2z
y x  

iii. 
2

2
z
x

         iv. (2,1)xyf  

Prompts/Questions 
x What do the notations 

represent? 
x What is the order of 

differentiation? 
o With respect to 

which variable do 
you differentiate 
first? 

Solution 
Keeping y fixed and differentiating w.r.t. x, we 

obtain 221 10z x xyx . 

Keeping x fixed and differentiating w.r.t. y, we 

obtain  2 25 18z x yy . 

(i) 
2

2 2( 5 18 ) 10z z x y xx y x y x
 

(ii) 
2

2(21 10 ) 10z z x xy xy x y x y  

(iii) 
2

2
2 (21 10 ) 42 10z z x xy x yx z xx
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(iv) 
2

(2,1)

(2,1) 10(2) 20xy
zf y x  

 
Example 2.9 
Determine all first and 
second order partial 
derivatives of the 
following functions: 
i. sin cosz y x x y  
ii. (2 )xyz e x y  
iii. ( , ) cos xf x y x y ye  

Prompts/Questions 
x What are the first 

partial derivatives of f ? 
o Which derivative 

rules or techniques 
do you need? 

x How many second-
order derivatives are 
there?    
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2.2 Increments and Differential 

2.2.1 Functions of One Variable – 
A Recap 

Tangent Line approximation 
 

 

 

 

 

 

 
If f is differentiable at 0xx  , the tangent 
line at ))(,( 00 xfxP  has slope )( 0xfm c  
and equation 

y = f(x0) + )( 0xf c (x � x0) 

'x 

x1  x0 

 f 

'y 

 P  f(x0) 

T 

 f(x1) 
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If x1 is near x0, then f(x1) must be close to 
the point on the tangent line, that is 

))(()()( 01001 xxxfxfxf �c�|  

This expression is called the linear 
approximation formula. 

Incremental Approximation 
We use the notation 'x for the difference 

01 xx �  and the corresponding notation 'y 
for f(x1) � f(x0). Then the linear 
approximation formula can be written as 

xxfxfxf ')()()( 001 c|�  

or equivalently 

0( )y f x x' 'c|  
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Definition 2.2 
If f is differentiable and the increment 'x 
is sufficiently small, then the increment 
'y, in y, due to an increment of 'x, in x is 
given by 

xdx
dyy '' |  

or xxff '' )(c|  

 

Note 

This version of approximation is 
sometimes called the incremental 
approximation formula and is used to 
study propagation of error. 
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The Differential 
dx is called the differential of x and we 
define dx to be 'x, an arbitrary increment 
of x. Then, if f is differentiable at x, we 
define the corresponding differential of y, 
dy as 

dxdx
dydy   

or equivalently dxxfdf )(c  

 

Thus, we can estimate the change  'f,  in  f 
by the value of the differential  df  provided 
dx  is the change in x. 

dff |'  
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i dxx  '  

i 'y is the rise of f (the change in y) that 
occurs relative to dxx  '  

i dy is the rise of tangent line relative to 
dxx  '  

The true change: )()( 00 xfxxff �� ''  

The differential estimate: dxxfdf )(c  

x0 + 'x  x0 

 f 

'y 

dy 
 P  f(x0) 

 f(x0 + 'x) 

T 

'x = dx 
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2.2.2 Functions of Two Variables 
Let ),( yxfz  , where x and y are 
independent variables. 

If x is subject to a small increment (or a 
small error) of 'x, while y remains 
constant, then the corresponding 
increment of 'z in z will be 

zz x
x
w

' | '
w

 

Similarly, if y is subject to a small 
increment of 'y, while x remains constant, 
then the corresponding increment of 'z in z 
will be 

zz y
y
w

' | '
w

 

It can be shown that, for increments (or 
errors) in both x and y, 

z zz x y
x y
w w

' | ' � '
w w

 



 28 

The formula for a function of two 
variables may be extended to functions of 
a greater number of independent variables. 

For example, if ),,( zyxfw   of three 
variables, then 

w w ww x y z
x y z

w w w
' | ' � ' � '

w w w
 

Definition 2.3 
Let ),( yxfz   where f is a differentiable 
function and let dx and dy be independent 
variables. The differential of the dependent 
variable, dz is called the total differential 
of z is defined as 

dyyxfdxyxfyxdfdz yx ),(),(),( �   

Thus, dzz |'  provided dx is the change 
in x and dy is the change in y. 
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Example 2.9 

Let 332),( yxyxyxf �� . Compute 'z 
and dz as (x, y) changes from (2, 1) to  
(2.03, 0.98). 

Solution 
'z = f(2.03, 0.98) �f(2, 1) 

]1)1(2)2(2[

)98.0()98.0)(03.2()03.2(2

32

33

���

�� 
 

= 0.779062 

dyyxfdxyxfdz yx ),(),( �  

yyxxyx '' )3()6( 22 ���  

At (2, 1) with 'x = 0.03 and 'y = �0.02, 

77.0)02.0)(1()03.0)(25(  ��� dz  
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Example 2.10 
A cylindrical tank is 4 ft high and has a 
diameter of 2 ft. The walls of the tank are 
0.2 in. thick. Approximate the volume of 
the interior of the tank assuming that the 
tank has a top and a bottom that are both 
also 0.2 in. thick. 

Solution 

WANT: interior volume of tank, V 

KNOW: radius, r = 12 in., height, h = 48 
in. 

dhVdrVdVV hr � |' ,   
dhdr  � 2.0  

Volume of tank, hrV 2S  

rhVr S2 �   and  2rVh S  

dhrdrrhdhVdrVV hr )()2( 2SS' � �|  
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Since r = 12 in., h = 48 in., and 
dhdr  � 2.0   we have, 

)2.0()12()2.0)(48)(12(2 2 ���| SS'V  
3in3.814�|  

Thus the interior volume of the tank is 
32 in4.900,203.814)48()12( |�| SV  

 

Example 2.11 
Suppose that a cylindrical can is designed 
to have a radius of 1 in. and a height of 5 
in. but that the radius and height are off by 
the amounts dr = 0.03 and dh = �0.1. 
Estimate the resulting absolute, relative and 
percentage changes in the volume of the 
can. 
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Solution 

WANT: Absolute change, V dV  

Relative change, V dV
V V

 

Percentage change, 100uV
dV  

Absolute change, 

dhrrhdrdhVdrVdV hr
22 SS � �  

SSS 2.0)1.0()1()03.0)(5)(1(2 2  �� 
 

Relative change, 

04.0
)5()1(

2.02.0
22    

S
S

S
S
hrV

dV  

Percentage change, 

%410004.0100  u uV
dV  
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Example 2.12 

1. The dimensions of a rectangular block 
of wood were found to be 100 mm, 120 
mm and 200 mm, with a possible error 
of 5 mm in each measurement. Find 
approximately the greatest error in the 
surface area of the block and the 
percentage error in the area caused by 
the errors in the individual 
measurements. 

2. The pressure P of a confined gas of 
volume V and temperature T is given by 

the formula ¸
¹
·¨

©
§ V

TkP  where k is a 

constant. Find approximately, the 
maximum percentage error in P 
introduced by an error of %4.0r  in 
measuring the temperature and an error 
of %9.0r  in measuring the volume. 
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Example 2.13 
The radius and height of a right circular 
cone are measured with errors of at most 
3% and 2% respectively. Use differentials 
to estimate the maximum percentage error 
in computing the volume. 
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2.3 Chain Rule 

2.3.1 Partial Derivatives of 
Composite Functions 

Recall: The chain rule for composite 
functions of one variable 
If y is a differentiable function of x and x 
is a differentiable function of a parameter 
t, then the chain rule states that 

dt
dx

dx
dy

dt
dy �  

i The corresponding rule for two 
variables is essentially the same except 
that it involves both variables. 

Note 
The rule is used to calculate the rate of 
increase (positive or negative) of 
composite functions with respect to t. 
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Assume that ),( yxfz   is a function of x 
and y and suppose that x and y are in turn 
functions of a single variable t, 

)(txx  ,   )(tyy   

Then ))(),(( tytxfz   is a composition 
function of a parameter t. 

Thus we can calculate the derivative dt
dz  

and its relationship to the derivatives  

x
z
w
w , 

y
z
w
w , dt

dx  and dt
dy  is given by the 

following theorem. 

Theorem 2.1 
If ),( yxfz   is differentiable and x and y 
are differentiable functions of t, then z is a 
differentiable function of t and 

dt
dy

y
z

dt
dx

x
z

dt
dz �

w
w��

w
w  
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Chain Rule – one parameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dt
dy

 

Dependent 
variable 

Intermediate 
variable 

Independent 
variable 

t 

 y x 

dt
dx

 

x
z
w
w

 y
z
w
w

 

),( yxfz   

dt
dy

y
z

dt
dx

x
z

dt
dz �

w
w��

w
w 
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Chain Rule – one parameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 dt

dz
z
w

dt
dy

y
w

dt
dx

x
w

dt
dw �

w
w��

w
w��

w
w  

x
w
w
w

 z
w
w
w

 

dt
dz

 dt
dy

 

 y 

y
w
w
w

 

Dependent 
variable 

Intermediate 
variable 

Independent 
variable t 

 z x 

dt
dx

 

),,( zyxfw  
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Chain Rule – two parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s
x

dx
dy

s
y

r
x

dx
dy

r
y

w
w� 

w
w

w
w� 

w
w ,  

s
x
w
w

 

r s 

dx
dy

 

x 

r
x
w
w

 

)(xfy  
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Theorem 2.2 
Let ),( srxx   and ),( sryy   have 
partial derivatives at r and s and let 

),( yxfz   be differentiable at (x, y). 
Then )),(),,(( srysrxfz   has first 
derivatives given by 

r
y

y
z

r
x

x
z

r
z

w
w�

w
w�

w
w�

w
w 

w
w  

s
y

y
z

s
x

x
z

s
z

w
w�

w
w�

w
w�

w
w 

w
w  
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Example 2.14 

Suppose that yxz 3  where tx 2  and 
2ty  . Find dt

dz . 

Solution 

WANT: dt
dy

y
z

dt
dx

x
z

dt
dz �

w
w��

w
w  

yxz 3    yxx
z 23 
w
w�  and 3xy

z  
w
w  

tx 2      2 � dt
dx  

2ty       tdt
dy 2 �  

Hence, dt
dy

y
z

dt
dx

x
z

dt
dz �

w
w��

w
w  

)2)(()2)(3( 32 txyx �  
4322 40)2()2()()2(6 ttttt  �  
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Example 2.15 
Suppose that yxyz �  where 

Tcos x  and Tsin y . Find Td
dz  when 

2
ST   

Solution 

WANT: 
2STT  d

dz  

From the chain rule with T in place of t, 

TTT d
dy

y
z

d
dx

x
z

d
dz �

w
w��

w
w  

we obtain 

))(cos1()(2
1

)sin)(()(2
1

21

21

T

TT

���

�� 

�

�

xyxy

yyxyd
dz
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When 2
ST  , we have 

02cos   Sx  and 12sin   Sy  

Substituting x = 0, y = 1, 2
ST   in the 

formula for dt
dz  yields 

2
1)0)(1)(1(2

1)1)(1)(1(2
1

2
� �� 

 STTd
dz  
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Example 2.16 

Let 24 yxz �  where x = uv2 and  

y = u3v. Find u
z

w
w  and v

z
w
w . 
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Example 2.16a 
Suppose that yzxyw �  where y = sin x 
and xez  . Use an appropriate form of 
the chain rule to find dx

dw. 
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Example 2.17 

Find s
w
w
w  if 324 zyxw ��  where 

2rsex  , t
sry � ln  and z = rst2. 
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2.3.2 Partial Derivatives of 
Implicit Functions 

The chain rule can be applied to implicit 
relationships of the form 0),(  yxF . 

Differentiating 0),(  yxF  with respect 
to x gives  

0 �
w
w��

w
w

dx
dy

y
F

dx
dx

x
F  

In other words, 0 �
w
w�

w
w

dx
dy

y
F

x
F  

Hence,  yF
xF

dx
dy

ww
ww�  

In summary, we have the following results. 

Theorem 2.3 
If 0),(  yxF  defines y implicitly as a 
differentiable function of x, then 

y

x
F
F

dx
dy �
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Theorem 2.3 has a natural extension to 
functions ( , )z f x y , of two variables. 

Theorem 2.4 
If 0),,(  zyxF  defines z implicitly as a 
differentiable function of x and y, then 

z

x
F
F

x
z �
 

w
w    and    

z

y

F
F

y
z �
 

w
w  

 

Example 2.18 
If y is a differentiable function of x such 
that 

034 223  ��� yxyyxx  

find dx
dy . 
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Solution 

KNOW: 
y

x
F
F

dx
dy �

  

Let 223 34),( yxyyxxyxF ��� . Then 

yxyxFx 383 2 ��  

and  yxxFy 234 2 ��  

yxx
yxyx

F
F

dx
dy

y

x

234
)383(

2

2

��
��� 

�
 ?  

Alternatively, differentiating the given 
function implicitly yields 

0233483 22  �¸
¹
·

¨
©
§ ��¸

¹
·

¨
©
§ �� dx

dyydx
dyxydx

dyxxyx  

yxx
yxyx

dx
dy

234
)383(

2

2

��
��� ?  

which agrees with the result obtained by 
Theorem 2.3. 
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Example 2.19a 

If yyxyx  ��� )cos()sin(  determine 

dx
dy . 
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Example 2.19b 

If 2 2 2 2 5z xy zy x x y� � �   determine 

expressions for z
dx
w  and z

dy
w . 
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2.5 Local Extrema 

Focus of Attention 

¾ What is the relative extremum of a function 
of two variables? 

¾ What does a saddle point mean? 
¾ What is a critical point of a function of two 

variables? 
¾ What derivative tests could be used to 

determine the nature of critical points? 

In this section we will see how to use partial 
derivatives to locate maxima and minima of 
functions of two variables. 

First we will start out by formally defining local 
maximum and minimum: 

Definition 2.5 

A function of two variables has a local 
maximum at (a, b) if ( , ) ( , )f x y f a b  when (x, y) 
is near (a, b). The number ( , )f a b  is called a local 
maximum value. 

If ( , ) ( , )f x y f a b  when (x, y) is near ( , )a b , then 
( , )f a b  is a local minimum value. 
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Note 

¾ The points (x, y) is in some disk with center 
(a, b). 

¾ Collectively, local maximum and minimum 
are called local extremum. 

¾ Local extremum is also known as relative 
extremum. 

The process for finding the maxima and minima 
points is similar to the one variable process, just 
set the derivative equal to zero. However, using 
two variables, one needs to use a system of 
equations. This process is given below in the 
following theorem: 

Theorem 2.5 

If f  has a local maximum or minimum at (a, b) 
and the first-order partial derivatives of f  exist at 
this point, then ( , ) 0xf a b  and ( , ) 0yf a b . 
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Definition 2.6 

A point (a, b) is called a critical point of the 
function ( , )z f x y  if ( , ) 0xf a b  and ( , ) 0yf a b  
or if one or both partial derivatives do not exist at 
(a, b). 
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Relative Max 

 
Point ( , , ( , ))a b f a b  is a local maximum 

Relative Min. 

 
Point ( , , ( , ))a b f a b  is a local minimum 

Saddle Point 



Point ( , , ( , ))a b f a b  is a local minimum 

Saddle Point 

 
Point ( , , ( , ))a b f a b  is a saddle point 

Remark 

The values of z at the local maxima and local 
minima of the function ( , )z f x y  may also be 
called the extreme values of the function, 
( , )f x y . 

 



Theorem 2 : Second-Partials Test 
Let ( , )f x y  have a critical point at (a, b) and 

assume that f  has continuous second-order 
partial derivatives in a disk centered at (a, b). 
Let 

2( , ) ( , ) [ ( , )]xx yy xyD f a b f a b f a b  

(i) If D > 0 and ( , ) 0xxf a b , then f  has a local 
minimum at (a, b). 

(ii) If D > 0 and ( , ) 0xxf a b , then f  has a local 
maximum at (a, b). 

(iii) If D < 0, then f  has a saddle point at (a, b). 

(iv) If D = 0, then no conclusion can be drawn. 



Remark 

The expression 2
xx yy xyf f f  is called the 

discriminant or Hessian of f. It is sometimes 
easier to remember it in the determinant form, 

2 xx xy

xx yy xy
xy yy

f f
f f f

f f
 

If the discriminant is positive at the point (a, b), 
then the surface curves the same way in all 
directions: 

i downwards if 0xxf , giving rise to a local 
maximum 

i upwards if ( , ) 0xxf a b , giving a local 
minimum. 

If the discriminant is negative at (a, b), then the 
surface curves up in some directions and down 
in others, so we have a saddle point. 
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Example 2.34 

Locate all local extrema and saddle points of 
2 2( , ) 1f x y x y . 

Solution 

i First determine fx and fy: 

( , ) 2xf x y x  and ( , ) 2yf x y y . 

i Secondly, solve the equations,  
fx = 0 and fy = 0 for x and y: 

2 0x    and   2 0y  

So the only critical point is at (0, 0). 

i Thirdly, evaluate fxx , fyy and fxy at the critical 
point. 

( , ) 2xxf x y , ( , ) 0xyf x y  and ( , ) 2yyf x y  

At the point (0, 0), 

(0,0) 2xxf ,   (0,0) 0xyf    and 
(0,0) 2yyf  

i Compute D: 
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2 0
4

0 2
D  

Since D = 4  > 0 and 2)0,0( � xxf  < 0, the 
second partials test tell us that a local maximum 
occurs at (0, 0). 

In other words, the point (0, 0, 1) is a local 
maximum, with f  having a corresponding 
maximum value of 1. 

Example 2.35 
Locate all local extrema 
and saddle points of 

3 3( , ) 8 24f x y x xy y � � . 

Prompts/Questions 

x What are the critical 
points? 
o How are they 

calculated? 
x How do you classify 

these points? 
o Can you use the 

Second Derivative 
Test? 

Solution 

224 24xf x y ,   224 3yf x y  

i Find the critical points, solve 
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224 24 0x y                              (1) 
224 3 0x y                             (2) 

From Eqn. (1), 2xy  . Substitute this into Eqn. 
(2) to find 

2 224 3( ) 0x x  
0,2x  

If x = 0, then y = 0 

If x = 2, then y = 4 

So the critical points are (0, 0), (2, 4). 

i Find fxx , fyy and fxy and compute D: 

( , ) 48xxf x y x , ( , ) 24xyf x y  and 
( , ) 6yyf x y y . 

48 24
288 576

24 6
xx xy

xy yy

f f x
D xy

yf f
 

i Evaluate D at the critical points: 

At (0, 0), D = �576  < 0, so there is a saddle 
point at (0, 0). 

At (2, 4), D = 288(2)(4)-576 = 1728  > 0 
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and fxx(2, 4) = 48(2) = 96  > 0. So there is a local 
minimum at (2, 4). 

Thus f  has a saddle point (0, 0, 0) and local 
minimum (2, 4, �64). 

Example 2.36 

Find the local extreme 
values of the function. 

(i) 2 4( , )f x y x y  
(ii) 3 3( , )h x y x y �  

Prompts/Questions 
x What are the critical 

points? 
x Can you use the second 

partials test? 
o What do you do when 

the test fails? 
x How does the function 

behave near the critical 
points? 
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Solution 

(i) The partial derivatives of f are 42xf xy ,   
2 34yf x y . 

Solving 0xf  and 0yf  simultaneously, we 
note that the critical points occurs whenever 
0x  or 0y . That is every point on the x� or  

y – axis is a critical point. 
So, the critical points are ( , )x o  and (0, )y . 
Using the Second Derivative Test: 

4 3
2 6 2 6

3 2 2

2 6

2 8
24 64

8 12

40

y xy
D x y x y

xy x y

x y

 

For any critical point 0( ,0)x  or 0(0, )y , the second 
partials test fails. 

Let’s analyse the function. Observed that 
( , ) 0f x y  for every critical point (either 0x  or 
0y  or both. Since 2 4( , ) 0f x y x y  when 0x  

and 0y , it follows that each critical point must 
be a local minimum. 
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The graph of f is shown below. 

 
Graph of 2 4( , )f x y x y  

 

 y  x 

 z 
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(ii) 2( , ) 3xh x y x ,   2( , ) 3yh x y y . Solving the 
equations hx = 0 and hy = 0 simultaneously, we 
obtain (0, 0) as the only critical point. 

The second partials test fails here. Why? 
Let us examine the traces on the coordinate 
planes… finish it off 
 
 
 

Graph of 3 3( , )h x y x y  

( , )h x y  has neither kind of local extremum nor a 
saddle point at (0, 0). 

 



Question 

In equations 1 - 3 , find critical points of � �,f x y  

and determine whether � �,f x y  at that point is 

a local maximum or a local minimum, or the 
value of the saddle point. 
1. 2 2, 3 6f x y x y y  

2. 2 2, 4 6 23f x y x y x y  

3. 2 2, 2 6 4f x y x y x y  
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