Lagrange Multipliers

We want to optimize (i.e. find the minimum and maximum value of) a function,

$$
f(x, y, z)
$$

subject to the constraint

$$
g(x, y, z)=k
$$

The constraint may be the equation that describes the boundary of a region or it may not be.

Method of Lagrange Multipliers

STEP 1: Solve the following system of equation

$$
\begin{aligned}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \\
g(x, y, z) & =k
\end{aligned}
$$

Where we have to solve these 4 equations simultaneously:

$$
\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle\lambda g_{x}, \lambda g_{y}, \lambda g_{z}\right\rangle \quad g(x, y, z)=k,
$$

or

$$
\begin{aligned}
& \hline f_{x}=\lambda g_{x} \\
& f_{y}=\lambda g_{y} \\
& f_{z}=\lambda g_{z} \\
& g(x, y, z)=k
\end{aligned}
$$

STEP 2: Plug in all solutions, (x, y, z) from the first step into $f(x, y, z)$ and identify the minimum and maximum values, provided they exist.

The constant, λ, is called the Lagrange Multiplier.
Example 1: Find the dimensions of the box with largest volume if the total surface area is $64 \mathrm{~cm}^{2}$.

Solution: We want to find the largest volume and so the function that we want to optimize is given by,

$$
f(x, y, z)=x y z
$$

Next we know that the surface area of the box must be a constant 64. So this is the constraint. The surface area of a box is simply the sum of the areas of each of the sides, so the constraint is given by,
$2 x y+2 x z+2 y z=64 \quad \longrightarrow \quad x y+x z+y z=32$
Thus $g(x, y, z)=x y+x z+y z$.
Here are the four equations that we need to solve.

$$
\begin{align*}
y z=\lambda(y+z) & \left(f_{x}=\lambda g_{x}\right) \tag{1}\\
x z=\lambda(x+z) & \left(f_{y}=\lambda g_{y}\right) \\
x y=\lambda(x+y) & \left(f_{z}=\lambda g_{z}\right) \tag{2}\\
x y+x z+y z=32 & (g(x, y, z)=32)
\end{align*}
$$

Hence, $(x, y, z)=(3.266,3.266,3.266)$.

Example 2: Find the maximum and minimum of $f(x, y)=5 x-3 y$ subject to the constraint $x^{2}+y^{2}=136$.

Example 3: Find the maximum and minimum of $f(x, y, z)=4 y-2 z$ subject to the constraints $2 x-y-z=2$ and $x^{2}+y^{2}$.

