DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE UNIVERSITI TEKNOLOGI MALAYSIA

SSH 1033 MATHEMATICAL METHODS 2

TUTORIAL 6

By using the definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions.

(a)
$$f(x, y) = \frac{1}{y - x}$$
.

(b)
$$f(x, y) = \frac{y}{3x - 2y}$$
.

By using the definition, find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ for the following functions.

(a)
$$u(x, y, z) = \frac{z}{x-z}$$
.

(b)
$$u(x, y, z) = \frac{x}{2x - y + z}$$
.

3. Use the definition to find $\frac{\partial z}{\partial x}$, given that

(a)
$$z(x, y) = xy + \sin(x - y)$$
.

(b)
$$z(x, y) = 2x^2y + e^{-y}$$

4. Given $z = \frac{x-y}{\sqrt{x^2+y^2}}$

(a) Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ when $x = 8$ and $y = 6$. (b) Show that $\frac{\partial z/\partial x}{\partial z/\partial y} = -\frac{y}{x}$.

(b) Show that
$$\frac{\partial z/\partial x}{\partial z/\partial y} = -\frac{y}{x}$$

5. If
$$u = x \ln \left(1 + \frac{x}{y}\right) + y \ln \left(1 + \frac{y}{x}\right)$$
 for $x > 0$, $y > 0$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$.

6. If
$$f(x, y) = x \sin(y/x)$$
, find f_x , f_y , f_{xx} , f_{xy} , f_{yx} , f_{yy} when $x = 2$ and $y = \frac{1}{2}\pi$.

7. If
$$f(x, y) = y \cos(x - 2y)$$
, find f_x , f_y , f_{xx} , f_{xy} , f_{yx} , f_{yy} when $x = \frac{1}{4}\pi$ and $y = \pi$.

8. If
$$z = \frac{x^2 - y^2}{x^2 + y^2}$$
, find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ and $\frac{\partial^2 z}{\partial x \partial y}$.

9. If
$$z = x^2 \tan^{-1} \left(\frac{y}{x}\right)$$
, find $\frac{\partial^2 z}{\partial x \partial y}$ when $x = y = 1$.

10. Find f_{xyz} when

(a)
$$f(x, y, z) = e^{xyz},$$

(b)
$$f(x, y, z) = \frac{xy}{2x+z}$$
,

and verify in each case that $f_{xyz} = f_{yzx} = f_{zxy}$.

Use implicit partial differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

(a)
$$x^2 - 2y^2 + 3z^2 - yz + y = 0$$
.

(b)
$$xz + ye^{3y-2z} = x^2$$
.

(c)
$$\ln (1+x^2) + \ln (x+yz) = xy^2z^3$$
.

(d)
$$\cos(x+y+z) = xyz$$
.

12. If
$$z^2 = x^2 + y^2$$
, show that $\frac{\partial z}{\partial x} = \frac{x}{z}$ and $\frac{\partial z}{\partial y} = \frac{y}{z}$. Hence, deduce that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{z}.$$

13. If z is a function of x and y and is defined implicitly by $x^2 + y^2 + z^2 = 1$, show that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z - \frac{1}{z}.$$

Assume that F(x, y) = 0 defines y implicitly as a differentiable function of x. Show that 14.

$$\frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y},$$

provided $\partial F/\partial y \neq 0$. Hence, use this formula to find $\frac{dy}{dx}$

(a)
$$\frac{4y}{x} + \frac{2x}{y} = 3$$
.
(c) $x^2 + y^2 = e^{x/y}$.

(b)
$$x \tan y = y \sin x$$
.

(c)
$$x^2 + y^2 = e^{x/y}$$

(d)
$$y \ln \cos x = x \ln \sin y$$
.

Assume that F(x, y, z) = 0 defines z implicitly as a function of x and y. Show that 15.

$$\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z}$$
 and $\frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z}$,

provided $\partial F/\partial z \neq 0$. Hence, use these formulas to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial x}$

(a)
$$x^2 - 2y^2 + 3z^2 - yz + y = 0$$
.

(b)
$$xz + y \ln x - x^2 + 4 = 0$$
.

(c)
$$\ln (1+x^2) + \ln (x+yz) = xy^2z^3$$
.

(d)
$$\cos(x+y+z) = xyz$$
.

- The equation $x = r \cos \theta$ and $y = r \sin \theta$, which relate Cartesian and polar coordinates, define r and θ implicitly as functions of x and y.
 - (a) Use implicit differentiation with respect to the x on both equations to show that

$$\frac{\partial r}{\partial x} = \cos \theta$$
 and $\frac{\partial \theta}{\partial x} = -\frac{\sin \theta}{r}$.

Similarly show that, implicit differentiation with respect to the y on both equations to show that

$$\frac{\partial r}{\partial y} = \sin \theta$$
 and $\frac{\partial \theta}{\partial y} = \frac{\cos \theta}{r}$.

(b) Let $z = f(r, \theta)$, where r and θ are defined implicitly as functions of x and y by the equations $x = r \cos \theta$ and $y = r \sin \theta$. Use the results in (a), to show that

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r} \cos \theta - \frac{1}{r} \frac{\partial z}{\partial \theta} \sin \theta$$

and also

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r} \sin \theta + \frac{1}{r} \frac{\partial z}{\partial \theta} \cos \theta.$$

(c) Finally use the results in (b) to show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$$

17. If f(x, y) is a function of x, y and $z = xy + f(x^2 + y^2)$, show that

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = y^2 - x^2.$$

- 18. Use chain rule to find $\frac{dw}{dt}$.
 - (a) $w = 3x^2y^3$; $x = t^4$, $y = t^2$.
 - (b) $w = \ln(2u^2 + v)$; $u = \sqrt{t}$, $v = t^{3/2}$.
 - (c) $w = r^2 s \tan v$; $r = \sin^2 t$, $s = \cos t$, v = 4t.
 - (d) $w = e^{1-xy}$; $x = 2t^{1/3}$, $y = t^3$.
 - (e) $w = \sqrt{1 + x 2xy^2z^3}$; $x = e^{-t}$, $y = 3t^2 + 2$, $z = \ln t$.
- 19. Use the chain rule to find the value of $\frac{dw}{ds}$ if $w = r^2 r \tan \theta$, $r = \sqrt{s}$, $\theta = \pi s$ when $s = \frac{1}{4}$.
- **20.** Let z = f(x, y), where $x = t \cos t$, and $y = e^t$. Find $\frac{dz}{dt}$ at t = 0 given that $f_x(-1, 1) = 4$ and $f_y(-1, 1) = -3$.
- 21. Find $\frac{d^2z}{d\theta^2}$ for the following functions using the chain rule.

(a)
$$z = x^2 - y^2$$
; $x = \cos \theta$, $y = \sin \theta$.

(b)
$$z = \ln(x^2y)$$
; $x = e^{\theta^2}$, $y = \theta^2$.

- 22. Find the rate of change in the volume of a cylinder with radius 8 cm and height 12 cm if the radius increases at the rate of 0.2 cm/s while the height decreases at the rate of 0.5 cm/s.
- 23. The length, width and height of a rectangular box increases at the rate of 1 cm/s, 2 cm/s and 3 cm/s respectively. Calculate the rate of increase in the diagonal of the box when the length is 2 cm, width is 3 cm and height 6 cm.
- 24. Find the first partial derivatives for the following functions using the chain rule.
 - a. $z = x^2y xy^3 + 2$; $x = r\cos\theta$, $y = r\sin\theta$.
 - **b.** $z = \cos x \sin y$; x = u v, $y = u^2 + v^2$.
 - **c.** z = x/y; $x = 2\cos u$, $y = 3\sin v$.
 - **d.** $z = r^3 + s + v$; $r = xe^y$, $s = ye^x$, $v = x^2y$.
 - e. z = pq + qw; p = 2x y, q = x 2y, w = -2x + 2y.
- 25. Given $w = \cos(uv)$; u = xyz, $v = \frac{\pi}{4(x^2 + y^2)}$, find $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial z}$ when x = y = z = 1.
- 26. Use the chain rule to find the value of $\frac{\partial u}{\partial r}$ at point $(\sqrt{\pi}, \sqrt{\pi}, 1)$, given that $u = z \sin(xy)$, x = r + s, y = r s, and $z = r^2 + s^2$.

35. If z = f(x, y), where x = s + t and y = s - t, show that

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \frac{\partial z}{\partial s}\frac{\partial z}{\partial t}.$$

36. If u = f(x, y), where $x = e^s \cos t$ and $y = e^s \sin t$, show that

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = e^{-2s} \left[\left(\frac{\partial u}{\partial s}\right)^2 + \left(\frac{\partial u}{\partial t}\right)^2 \right].$$

37. Let z = f(x, y), where x = u + v and y = u - v. Show that

$$\frac{\partial^2 z}{\partial v \partial u} = \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2}.$$

38. Given $u = \frac{1}{r} \{ f(ct+r) + g(ct-r) \}$, where f and g are arbitrary functions, show that

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} \right).$$

39. If $u = x^n f(y/x)$, where f is an arbitrary function, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu:$$

Hence deduce that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)u.$$

40. If u = f(x, y), where $x = e^s \cos t$ and $y = e^s \sin t$, show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2s} \left[\frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2} \right].$$

- 41. If z = f(x, y), where $x = r^2 + s^2$, y = 2rs, find $\frac{\partial^2 z}{\partial r \partial s}$.
- 42. If z = f(x, y), where $x = r \cos \theta$, $y = r \sin \theta$, find
 - (a) $\frac{\partial z}{\partial r}$.
- (b) $\frac{\partial z}{\partial \theta}$.
- (c) $\frac{\partial^2 z}{\partial r \partial \theta}$.

43. If u = f(x, y), where x = 2r - s and y = r + 2s, use the chain rule to show that

$$\frac{\partial u}{\partial x} = \frac{2}{5} \frac{\partial u}{\partial r} - \frac{1}{5} \frac{\partial u}{\partial s}.$$

Hence, find $\frac{\partial^2 u}{\partial y \partial x}$ in terms of derivatives with respect to r and s.

44. If u = x + y, v = xy, and f is a function of x and y, express $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ in terms of $\frac{\partial f}{\partial u}$, $\frac{\partial f}{\partial v}$ and prove that

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial u^2} + u \frac{\partial^2 f}{\partial u \partial v} + v \frac{\partial^2 f}{\partial v^2} + \frac{\partial f}{\partial v}.$$

45. Show that if $x = \rho \cos \phi$, $y = \rho \sin \phi$, the equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \qquad \text{become} \qquad \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \phi}, \quad \frac{\partial v}{\partial \rho} = -\frac{1}{\rho} \frac{\partial u}{\partial \phi}.$$

Hence, show that under the transformation $x = \rho \cos \phi$, $y = \rho \sin \phi$, the equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad \text{becomes} \qquad \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2} = 0.$$

46. Solve the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{*}$$

for u(x, y) by making a change of variables as follows. Define new variables

$$\xi = x - y, \quad \eta = x,$$

and evaluate the partial derivatives of x and y with respect to ξ and η . Writing $v(\xi, \eta) = u(x, y)$, use these derivatives and the chain rule to show that

$$\frac{\partial v}{\partial \eta} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y},$$

and that the equation

$$\frac{\partial^2 v}{\partial n^2} = 0$$

is equivalent to equation (*).

Deduce that the most general solution of (*) is

$$u(x, y) = f(x - y) + xg(x - y),$$

where f and g are arbitrary functions.

Solve (*) completely given that u(0, y) = 0 for all y, whilst $u(x, 1) = x^2$ for all x.