Assignment 2:
Chapter 4 \& 5 (PARTIAL DERIVATIVE AND ITS APPLICATIONS)
TOTAL MARKS: 40
1.

Given $z=f(x, y), x=r s$ and $y=r$. Show that
i. $\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} s+\frac{\partial z}{\partial y}$.
ii. $\frac{\partial^{2} z}{\partial r^{2}}=s^{2} \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}+s \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}$.
[7 MARKS]
2. A quantity S which is in terms of u and v is given as $S=u^{2}-u v$. The maximum errors in measuring u and v are respectively 0.3 and 0.5 .
Estimate the maximum error in calculating the value of S when $u=5$ and $v=8$.
[7 MARKS]
3. Let $z=f(x, y)$ where $x=t+\cos t$ and $y=e^{t}$. Find $\frac{d z}{d t}$ at $t=0$ given that $f_{x}(1,1)=4$ and $f_{y}(1,1)=-3$.
[5 MARKS]
4. Find local maximum, local minimum and saddle points of

$$
f(x, y)=2 x^{2}-4 x y+y^{4}+2
$$

if they do exist, by using the partial derivative tests.
[7 MARKS]
5. Find the minimum and maximum values of the function $f(x, y, z)=3 x+4 y$ on the circle $x^{2}+y^{2}=1$ by using Lagrange Multipliers
[7 MARKS]
6. Use Lagrange Multiplier Method to find the maximum and minimum values of $f(x, y, z)=x-2 y+5 z$ on the sphere $x^{2}+y^{2}+z^{2}=120$.
[7 MARKS]

