Universiti Teknologi Malaysia
 Department of Mathematical Sciences

Semester I, 2016/17
SSCM 1033: MATHEMATICAL METHODS II Test 2(25\%) Time: $1 \frac{1}{2} \mathrm{hr}$

ANSWER ALL QUESTIONS

1. Let z be defined implicitly as a function of x and y by the equation

$$
z^{2}=e^{z x}-\sin (x y)
$$

Find $\frac{\partial z}{\partial x}$.
2. Obtain $\frac{\partial p}{\partial r}$ by using the chain rule if

$$
p=u^{2} \sin (v w), \quad u=x y e^{r s}, \quad v=s \ln (x y r), \quad w=y s+r .
$$

[5 marks]
3. A cuboid having dimensions $20 \mathrm{~cm}, 30 \mathrm{~cm}$ and 60 cm is heated so that each sides is elongated by $\frac{1}{20} \mathrm{~cm}$. By using partial derivatives, estimate the increase in total surface area of the cuboid.
4. Use total differentials to approximate the maximum percentage error in calculating $P=\frac{w s^{3}}{r}$ if the maximum percentage error in r, s, and w are $3.2 \%, 2.3 \%$ and 1.6%, respectively.

> [7 marks]
5. Find all local extrema and saddle points, if any, on the graph of

$$
z=4 x y-y^{4}-x^{4}
$$

6. Use Lagrange Multiplier to find the dimensions of the rectangular box with the largest volume if the total surface area is given as $64 \mathrm{~cm}^{2}$
7. Evaluate

$$
\int_{0}^{\pi} \int_{\frac{y}{3}}^{\frac{\pi}{3}} \frac{\sin x}{x} d x d y
$$

8. Use polar coordinates to evaluate

$$
\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A
$$

where R is the region bounded by two circles r_{1} and r_{2}, which are centred at the origin and $\theta_{1} \leq \theta \leq \theta_{2}$.

1. Let z be defined implicitly as a function of x and y lay the equation $z^{2}=e^{z x}-\sin (x y)$. Find $\frac{\partial z}{\partial x} \quad 5 \mathrm{~m}$

$$
\begin{aligned}
F(x, y, z) & =z^{2}-e^{z x}+\sin (x y) \\
\frac{\partial z}{\partial x} & =-\frac{F_{x}}{F_{z}} \\
& =-\frac{\left(-z e^{z x}+\cos (x y)\right)}{\left.2 z-x e^{z x}+\operatorname{AnND}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Obtain } \frac{\partial p}{\partial r} \text { by using the chain wile if } \\
& p=u^{2} \sin (v w), u=x y e^{r r}, v=\sin (x y r), w=y s+r \text { in } \\
& \partial p=p \quad p_{r} \quad 5 \mathrm{~cm} \\
& \underline{\partial P}=P_{u} U_{r}+P_{v} V_{r}+P_{w} w_{r} \\
& \begin{array}{r}
=2 u \sin (v \omega) \operatorname{siy} e^{r s} \\
+\omega u^{2} \cos (v \omega) \frac{s x y s}{x y r}
\end{array} \\
& \begin{array}{lll}
1 & 1 & \\
u & v & w \\
1 & 1 & 1 \\
r & r & r
\end{array} \\
& +V u^{2} \cos (V w) \sin A M \quad * \text {. }
\end{aligned}
$$

3. A cuboid having dimensions $20 \mathrm{~cm}, 30 \mathrm{~cm}$ and 60 cm is heated so that each sides is elongated by $\frac{1}{2} \mathrm{~cm}$ is By vang ponhial derivatives, estimate the by $\frac{1}{20} \mathrm{~cm}$ total Risfuce aneayhof the cuboid. $(5 \mathrm{~m})$

$A(x, y, z)=2 x y+2 y z+2 x z 1 \cdot\left\{\begin{array}{l}A_{x}=2(y+z) 1 .\end{array}\right.$ $\begin{aligned} d A & =A_{x} d x+A_{y d y}+A_{z} d z \quad A_{z}=2(x+y) 1 \\ & =2(y+z)\left(\frac{1}{20}\right)+2(x+z)\left(\frac{1}{20}\right)+2(x+y)\left(\frac{1}{20}\right)\end{aligned}$

$$
=2(y+z)\left(\frac{1}{20}\right)+2(x+z)\left(\frac{1}{20}\right)+2(x+y)\left(\frac{1}{20}\right)
$$

$$
=\frac{1}{10}(y+z+x+z+x+y)
$$

$$
=\frac{1}{10}(2 y+2 z+2 x)
$$

$$
=\frac{1}{5}(y+z+n)=\frac{1}{5}(20+30+60)=\frac{110}{5}=22
$$

4) Use total differentials to approximate the maximum percentage error in calculating $P=\frac{w s^{3}}{r}$ if the maximum percentage error in r, S and w rare $3.2 \%, 2.3 \%$ and 1.6%, vespuctinely.

$$
\begin{aligned}
& p=\frac{W S^{3}}{r},\left\|\frac{d p}{p}\right\| \times 100 \% \text { ? } \\
& \left|\frac{d P}{P}\right|=\left|\frac{P_{w} d \omega+P_{s} d s+P_{r} d r}{P}\right| \\
& =\left|\frac{\frac{s^{3}}{r} d w+\frac{3 w s^{2}}{r} d s+-\frac{w s^{3}}{r^{2}}}{\frac{w s^{3}}{r}}\right|_{\sim\left|\frac{d w}{w}\right|+\left|3 \frac{d s}{s}\right|+\left|-\frac{d r}{r}\right|}^{\leqslant} \\
& \left|\frac{d p}{p}\right| \times 100 \% \leq\left|\frac{d w}{w}\right| \times 100 \%+3\left|\frac{d s}{s}\right| \times 100 \%+\left|\frac{d v}{v}\right| \times 100 \% \\
& \leq 1.6 \%+3(2.3) \%+3.2 \% \\
& \leqslant 11.7 \%
\end{aligned}
$$

5
4. Find all local extrema and saddle points, if amy, on the graph of

$$
\begin{gathered}
z=4 x y-y^{4}-x^{4} \quad(5 \mathrm{~m}) \\
\left.z_{x}=4 y-4 x^{3}=0 \Rightarrow y=x^{3}\right) \quad z_{x x}=-12 x^{2} \quad z_{x y}=4 \\
z_{y}=4 x-4 y^{3}=0 \Rightarrow y_{y y}=-12 y^{2} \\
x=x^{9} \\
0=14 \times x^{3} y^{2}-16 \quad z_{y y} \quad \begin{array}{c}
\\
x-x^{9}=0 \\
x\left(1-x^{8} m\right)=0 \\
x=0, x=1, x=-1 \\
\\
y=0 \quad y=1 \quad y=-1
\end{array}
\end{gathered}
$$

Pom	x	y	$z_{n n}$	D	Type
A	0	0	0	-16	Suddle
B	1	1	-12	>0	0
C	-1	-1	-12	>0	Max

6) Use Langrange mulriplievs to find the dimensions of the neetangular box with the largest volume if the total hersnce anea is given as $64 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
x(x, y, z)= & x y z . \\
A(x, y, z)= & 2 x y+2 x z+2 y z= \\
& \frac{x y+x z+y z}{g(x, y, z)}=\text { N4. }
\end{aligned}
$$

$\left.\begin{array}{c}f_{x}=\lambda g_{x} \\ f_{y}=\lambda g_{y} \\ f_{z}=\lambda g_{z} \\ g(x, y, z)=16\end{array}\right\}$

$$
\left.\begin{array}{l}
y z=\lambda(y+z) \\
x z=\lambda(x+z) \\
x y=\lambda(x+y)
\end{array}\right\} \begin{aligned}
& x y z=\lambda x(y+z) \\
& x y z=\lambda y(x+z) \\
& x y z=\lambda z(x+y)
\end{aligned}
$$

(1)

$$
\begin{aligned}
& =\text { (2): } \lambda x(y+z)=\lambda y(x+z) \\
& \lambda(x y+x z)-\lambda(y x+y z)=0
\end{aligned}
$$

$$
\lambda(x z-y z)=0 \Rightarrow \lambda=0, \quad z(x-y)=0
$$

$$
\rfloor
$$

$$
x-y=0 \Rightarrow x=y
$$

(2) (3):
7) Evaluate ${ }_{\pi} \pi / 3$ the double integral by revering its order

$$
\int_{0}^{\pi} \int_{y / 3}^{\pi / 3} \frac{\sin x}{x} d x d y
$$

$$
x=y / 3 \Rightarrow y=3 x
$$

$$
\begin{aligned}
& =\int 3 \sin x d x \\
& =-3[\cos x]_{0}^{\pi / 3} \\
& =-3[\cos \pi / 3-\cos 0] \\
& =-3\left(\frac{1}{2}-1\right)=\frac{3}{2} *
\end{aligned}
$$

8) Un polar coordinates to evaluate

$$
\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A
$$

Where R is the negion bounded by $r_{1} \in r \leqslant r_{2}, \theta_{1} \leq Q \leq \subseteq Q_{2}$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{\theta_{2}!}^{2} \frac{1}{1+r^{2}} \cdot r d r d \theta \\
= & \int_{\theta_{1}}^{r_{2}} \int_{r_{1}} \frac{1}{u} \cdot \frac{d u}{2} d \theta \\
= & \frac{1}{2} \int[\ln u] d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int\left[\ln \left(1+r^{2}\right)\right]_{r_{1}}^{r_{2}} d \theta \\
& =\frac{1}{2}\left(\ln \left(1+r_{2}^{2}\right)-\ln \left(1+r_{1}^{2}\right)\right) \int d \theta \\
& =\frac{1}{2}\left[\ln \left(1+r_{2}^{2}\right)-\ln \left(1+r_{1}^{2}\right)\right][\theta]_{Q_{1}}^{\theta_{2}} \\
& =\frac{1}{2}\left[\ln \left(1+r_{2}^{2}\right)-\ln \left(1+r_{1}^{2}\right)\right]\left[\theta_{2}-Q_{1}\right]
\end{aligned}
$$

