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6.4 Triple Integrals 

Definition 

If  f  is a function defined over a closed, 

bounded solid region G, then the triple integral 

of  f  over G is defined as 
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Iterated Integration 

Just as for double integrals, the practical method 

for evaluating triple integrals is to expressed 

them as iterated integrals as in the following 

theorem: 

Theorem 

If ),,( zyxf  is continuous over a rectangle 

solid G: lzkdycbxa  ,, , 

then the triple integral may be evaluated by the 

iterated integral 
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The iterated integration can be performed in any 

order (with appropriate adjustments) to the limits 

of integration: 

dzdydx  dydzdx  

dzdxdy  dxdzdy  

dxdydz  dydxdz  

 

Example 

Evaluate   
G

x dVyez2
, over the rectangular 

box G defined by 

11,21,10  zyx  

 

 



Solution 

We shall evaluate the integral in the order 

dzdydx . 
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Integral Over General Regions 

We restrict our attention to continuous functions  

f  and to certain simple types of regions. 

3 types of region: 

Type I – integrating over simple xy-solid 

Type II – integrating over simple xz-solid 

Type III – integrating over simple yz-solid 

Definition 

A solid region G is said to be of Type 1 if it lies 

between the graphs of two continuous functions 

of x and y, 

 ),(),(,,:),,( 21 yxkzyxkRyxzyxG 

where R is the projection of G onto the  

xy-plane, then 
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Type I Regions 
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Type II Regions 
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Type III Regions 
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Example 

Let G be the wedge in the first octant cut from 

the cylindrical solid 122  zy  by the planes 

xy   and 0x . Evaluate 

  
G
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Solution 

 Sketch the solid: choose Type I 

 

 

 

 

 

upper bounding surface: 122  zy  

lower bounding surface: xy-plane 

 The z-limits of integration: Draw a line L 

parallel to z-axis passing through solid 

region. 

As z increases, L enters G at z = 0 and leaves 

at 
21 yz   
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 The x-limits of integration: Draw a line M 

parallel to x-axis passing through plane 

region R. 

As x increases, M enters R at x = 0 and 

leaves at x = y. 

 The y-limits of integration: Choose  

y-limits that include all lines parallel to the 

x-axis. 

The integral is 
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Alternatively, we evaluate the integral by 

integrating first with respect to x (Type III). 

The solid is bounded in the back by the plane x 

= 0 and in the front by the plane xy  . 
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Question 1 

In questions 1(a) - 1(b), evaluate the triple integral. 

(a) 
1 2

2

1 0 0

x
x dydx dz  

(b) 
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Question 2 

Sketch the solid bounded by the graph of the 

given equation and express , ,f x y z dV as 

iterated integrals in six different ways. 

2 3 6, 0, 0, 0.x y z x y z  

 

Question 3 

In questions 3(a) - 3(b), evaluate the triple integral. 

(a) 0, 0, 0,3 6 6.x y z x y z  

(b) 2, 0, 0, 1, 1, 1.z y z x x y y  

 



Question 4 

In questions 4(a) and 4(b), sketch the solid whose 

volume is given by the iterated integral. 
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Cylindrical Coordinates 

 Generalization of polar coordinates in 
3
 

 We convert a triple integral from rectangular 

to cylindrical coordinates by writing 

cosrx  , sinry  , z = z 

The element of integration, 

dzddrrdV   

The function ),,( zyxf  is transform to 

),sin,cos(),,( zrrfzyxf   

 Cylindrical coordinates are convenient for 

representing cylindrical surfaces and surfaces 

for which the z-axis is the axis of symmetry. 



The cylindrical coordinate system 
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Theorem 

Let G be a solid with upper surface 

),(2 rgz   and lower surface ),(1 rgz   

and let R be the projection of the solid on the xy-

plane expressed in polar coordinates. Then if 

),,( zrf   is continuous on R, we have 
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Example 

Use cylindrical coordinates to evaluate 
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Question 1 

In questions 1(a) - 1(c), use cylindrical coordinates 

to find the volume of the solid bounded by the 

given surfaces. 

(a) 2 2, 9.z x y z  

(b) 
22 2 2, 1 1, 0.z x y x y z  

(c) 2 2 2 2, 4, 0.z x y x y z  

 

Question 2 

In questions 2(a) - 2(b), evaluate the integrals by 

changing the coordinates to cylindrical 

coordinates. 

(a) 
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Spherical Coordinates 

Definition 

Spherical coordinates represent a point P in space 

by ordered triples ),,(   in which 

1.  is the distance from P to the origin 

2.  is the angle OP  makes with the positive 

z-axis (  0 ) 

3.  is the angle from cylindrical coordinates. 

The spherical coordinate system 

Since  sinr , 

 cossincos  rx  

 sinsinsin  ry  

and  cosz ,   
2222  zyx  
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 The function ),,( zyxf  is transform to 

( , , ) ( sin cos , sin sin , cos )f x y z f          

 

 The element of integration, 

 ddddV sin2  

 Triple integrals in spherical coordinates 

are then evaluated as iterated integrals. 

The integral is 

 dddfdVf
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Question 1 

In questions 1(a) - 1(b), use spherical coordinates 

to evaluate the integrals. 

(a) 
3

2 2 2cos
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x y z dV  where G is 

the solid bounded by 2 21z x y and 

0.z  



(b) 

3
2 2 2x y z

G
e dV  where G is the solid 

bounded by 2 21z x y and 

2 2 .z x y  

 

Question 2 

In questions 2(a) - 2(b), evaluate the integrals by 

changing the coordinates to spherical coordinates. 
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6.5 Moments and Centre of Mass 

Notation and Terminology 

Lamina - a solid object that is sufficiently “flat” 

to be regarded as two-dimensional. 

Density: mass per unit area, ),( yx  

Mass: quantity of matter in a body, m 

Moment of mass: tendency of mass to produce 

a rotation about a point, line or plane 

Positive moment – clockwise rotation 

Negative moment – counterclockwise 

rotation 

Center of Gravity/Center of Mass: 

a point where a system behaves as if all its mass 

is concentrated there (balance point). 

Centroid: center of mass of a homogeneous 

body 



Moment of inertia: tendency to resist a 

change in the rotational motion about an 

axis. 
 

Definition 

If  is a continuous density function on the 

lamina corresponding to a plane region R, then 

 Mass,  
R

dAyxm ),(  

 Moments of mass about the x- and y-axes, 
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 Centre of mass, ),( yx  = 
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 If the density  is constant, the point ),( yx  

is called the centroid of the region. 



Example 

A lamina of density 
2),( xyx   occupies a 

region R bounded by the parabola 
22 xy   

and the line xy  . Find 

(a) mass 

(b) centre of mass of the lamina. 

Solution 

 sketch the region R 

 



(a) mass of lamina, 
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(b) centre of mass, ),( yx  
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From (a) we found m = 
20

63
, so the centre of 

mass is ),( yx  where 
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In an analogous way, we can use the triple 

integral to find mass and the center of mass of a 

solid in 
3
. The density ),,( zyx  at a point 

in the solid now refers to mass per unit volume. 

 Mass   
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 Moments  
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 If the density  is constant, the point 

),,( zyx  is called the centroid. 

 

Example 

Find the centroid of a solid of constant density   

bounded below by the disk 422  yx  in the 

plane 0z  and above by the paraboloid 
224 yxz  . 

 



Solution 

 

 

 

 

 

 

 

By symmetry, 0 yx . So we only need to 

find z . 
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A similar calculation gives 
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Thus the centroid is ),,( zyx  = (0, 0, 43). 

 

Question 

A solid is the tetrahedron bounded by the 

coordinate planes and the plane 

2 zyx . If the density 

xzyx 2),,(  , find the centre of mass. 



Moments of Inertia 

 Also called the second moments 
 

Definition 
The moments of inertia of a lamina of density  

covering the planar region R about the x-, y-, 

and z-axis are given by 
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The concept of moments of inertia generalise 

easily to solid regions. 

Suppose the solid occupies a region R and that 

the density at each point (x, y, z) in R is given 

by ),,( zyx . The moments of inertia of the 

solid about the x-, y-, and z-axis are given by 
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Question 1 

A lamina of density yxyx 2),(   occupies 

the region R in the plane that is bounded by the 

parabola 
2xy   and the lines 2x  and 

1y . Find the moments of inertia of the 

lamina about the x-axis and the y-axis. 

 

Question 2 

Find the moment of inertia of the “ice cream 

cone” G cut from the solid sphere 1  by the 

cone 
3


   about the z-axis. (Take  = 1) 

Question 3 

Find the moment of inertia of a solid 

hemisphere of radius 2 with respect to its axis of 

symmetry, if the density is proportional to the 

distance from the axis of symmetry. 

 


