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6.4 Triple Integrals

Definition

If f iIs a function defined over a closed,
bounded solid region G, then the triple integral
of f over G iIs defined as

[IIfy,2dV = lim 3 £(, Vi, 20)AV,
G

N—>00 =]

Iterated Integration

Just as for double integrals, the practical method
for evaluating triple integrals is to expressed
them as iterated integrals as in the following
theorem:

Theorem

If f(X, Y, Z) is continuous over a rectangle
solidG:a<x<b, c<y<d k<gz<I,

then the triple integral may be evaluated by the
Iterated integral



JI]f(xy,2)dV = } f(x, Yy, z) dxdydz
G k

The iterated integration can be performed in any
order (with appropriate adjustments) to the limits
of Integration:

dx dy dz dx dz dy

dy dx dz dy dz dx

dz dy dx dz dx dy
Example

Evaluate | | [ 2°ye* dV, over the rectangular

G
box G defined by

0<x<L11lLy<2 -1<Lz2<1



Solution

We shall evaluate the integral in the order

dx dy dz.
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Integral Over General Regions

We restrict our attention to continuous functions
f and to certain simple types of regions.

3 types of region:
Type | — integrating over simple xy-solid

Type Il — integrating over simple xz-solid
Type Il — integrating over simple yz-solid
Definition

A solid region G is said to be of Type 1 if it lies
between the graphs of two continuous functions
of xand y,

G={(x,¥,2) : X,y € Rk(X,y) <z<Kk,(X,Y)}
where R is the projection of G onto the
xy-plane, then

C Tk (x, -
Mty =|[| [ty |
G JJ Lk(xy) ]




Type I Regions

[[]fy.2dv = JJA[(ZTW f(x,Y,2)dz } dA

ki (X,Y)
R

Type IT Regions

[ fooy.2av Jj[; fx y,zmy}dA

91 (%,2)
R

Type IITI Regions

[T 1oy, nav MJ <>}

h (y.z)
R

Example
Let G be the wedge in the first octant cut from

the cylindrical solid y2 +2° =1 by the planes
y = X and X = 0. Evaluate

jéjzdv



Solution

¢ Sketch the solid: choose Type |

upper bounding surface: y2 +2° =1
lower bounding surface: xy-plane

¢ The z-limits of integration: Draw a line L
parallel to z-axis passing through solid
region.

As z Increases, L enters G at z = 0 and leaves

atz=\/1—y2

N
jijde:Lj _([ [z dz] dA




¢ The x-limits of integration: Draw a line M
parallel to x-axis passing through plane
region R.

As x Increases, M enters R at x = 0 and
leaves at x = .

¢ The y-limits of integration: Choose
y-limits that include all lines parallel to the
X-axis.

The integral is

2

1 y+1-y
[[fzdv = [ [ =zdzdxdy
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Alternatively, we evaluate the integral by
Integrating first with respect to x (Type IlI).

The solid is bounded in the back by the plane x
= 0 and in the front by the plane y = X.

[[fzav - jRjI[z o] dA




Question 1

In questions 1(a) - 1(b), evaluate the triple integral.

(a) flﬁzj;xedydxdz
(b) szozj;yexda:dydz

Question 2

Sketch the solid bounded by the graph of the

given equation and express ffff x,y,z dVas
Iterated integrals in six different ways.

r+2y+32=6r=0y=0,2=0.

Question 3

In questions 3(a) - 3(b), evaluate the triple integral.
(@ =0,y=0,2=0,3z + 6y + 2 = 6.

b)) z=9°2=02=0z=1y=—1y=1.



Question 4

In questions 4(a) and 4(b), sketch the solid whose
volume is given by the iterated integral.

(a)f f\/g—xfij dz dy dx

(b) I1L2L/; dz dy dx



Cylindrical Coordinates

¢ Generalization of polar coordinates in R’

¢ We convert a triple integral from rectangular
to cylindrical coordinates by writing

X=rcosf,y=rsinfd,z=z

The element of integration,

dV =rdrdédz
The function f (X, Y, z) is transform to
f(x,y,z) = f(rcosé, rsiné, z)

¢ Cylindrical coordinates are convenient for
representing cylindrical surfaces and surfaces
for which the z-axis is the axis of symmetry.



The cylindrical coordinate system
Zy
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Theorem

et G be a solid with upper surface
Z = g,(r, ) and lower surface z = g,(r, 0)

and let R be the projection of the solid on the xy-
plane expressed in polar coordinates. Then if
f(r, 8, z) is continuous on R, we have

”If(f 0,z)dV =| | gz(jrgf)(r 0,z)rdzdrdé

R g1(r,0)

Example

Use cylindrical coordinates to evaluate
3 \9-x° 9—x2—y2

_[ J j x° dz dy dx

=3 _\9-x? 0



Soluﬂon
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_3—93:

:M_Bfl—l—COSQHdQZ%W

4 2 4
0



Question 1

In questions 1(a) - 1(c), use cylindrical coordinates
to find the volume of the solid bounded by the
given surfaces.

@) z=z"+y°,2=09.

2
b z=z"+¢y,2°+ y—1 =12=0.
) z=z>+y",z°+y  =4,2=0.

Question 2

In questions 2(a) - 2(b), evaluate the integrals by
changing the coordinates to cylindrical
coordinates.

(a) folfoﬁfo 4x2y2zdzdxdy.
(b) fllj;mf: * +y° dzdrdy



Spherical Coordinates

Definition

Spherical coordinates represent a point P in space
by ordered triples (o, @, @) in which

1. pis the distance from P to the origin

2. ¢isthe angle OP makes with the positive
z-axis (0 £ ¢ < 1)

3. 0isthe angle from cylindrical coordinates.
The spherical coordinate system
Since I = psin ¢,
X =Trcoséd = psin ¢ cos d
y=rsingd = psingsiné

and z = pCOS @, X° + y° + 2% = p?
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e The function f (X, Y, z) Is transform to
f(x,y,2) = f(psinpcosd, psinpsing, pcosy)
e The element of integration,

dV = p?singdp deg do
e Triple integrals in spherical coordinates

are then evaluated as Iiterated integrals.
The integral Is

[[[f(p.d,0)dV =[] f(p, ¢ 6) p°singdpdgsdo
G G

Question 1

In questions 1(a) - 1(b), use spherical coordinates
to evaluate the integrals.

(a) fffgcos\/ A T " 4V where G is

the solid bounded by 2z = \/1 —z* —y”and
z = 0.




® [[f e\/ S 4V where G is the solid

bounded by z = \/1 —z° —y’*and
z = \/x2 + yQ.

Question 2

In questions 2(a) - 2(b), evaluate the integrals by
changing the coordinates to spherical coordinates.

(a)f f\/ﬁfégx v * + vy’ +2° dzdydr.

(b) j;\/;j;\/ﬁfo e \/x2 +y* + 2° dzdz dy.

© [ fFfJ— dz dy da.



6.5 Moments and Centre of Mass

Notation and Terminology

Lamina - a solid object that is sufficiently “flat”
to be regarded as two-dimensional.

Density: mass per unit area, o (X, Y)

Mass: quantity of matter in a body, m

Moment of mass: tendency of mass to produce
a rotation about a point, line or plane

Positive moment — clockwise rotation
Negative moment — counterclockwise
rotation

Center of Gravity/Center of Mass:

a point where a system behaves as if all its mass

IS concentrated there (balance point).

Centroid: center of mass of a homogeneous
body



Moment of inertia: tendency to resist a
change in the rotational motion about an
axis.

Definition

If &1s a continuous density function on the
lamina corresponding to a plane region R, then

¢ Mass, m = [[5(x,y)dA
R

¢ Moments of mass about the x- and y-axes,

M, = Hy&(x, y) dA
R

M, = [[x5(x, y)dA
R

— M M
¢ Centre of mass, ( X, Y) :( my | mX]

¢ If the density Sis constant, the point ( X, Y )
Is called the centroid of the region.



Example

A lamina of density 5(X, y) = X° occupies a

region R bounded by the parabola y = 2 — X2

and the line y = X. Find
(a) mass

(b) centre of mass of the lamina.

Solution

¢ sketch the region R



(a) mass of lamina,

1 2-x2 )
m=[[S(x,y)dA= [ [ x“dydx
R -2 X
1 2
:szy\i_x dx
-2

63

1
aom= [ (2x% = x* = x3)dx= =
4 20

(b) centre of mass, (X, y)

v My N7 I\/Ix
KNOW: X = — y=W

m
M, = Hyé(x, y) dA
R



11,6 4 2 9
§I(X — 5x +4x)dx:—7
-2

M, = ”x5(x, y) dA

12x
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From (a) we found m = 2—8 so the centre of

mass is ( X, Y ) where

- M —18/5 8

y
=M T 7
y_Mx__9/7 20 ~ —0.41

T m  63/20 49

In an analogous way, we can use the triple
Integral to find mass and the center of mass of a

solid in R®. The density S(X, Y, z) at a point
In the solid now refers to mass per unit volume.

¢ Mass m=|[[[o(xy,z)dV
G

¢ Moments

My, = [ [[xd(X Y, z)dV
G



My, =[[[yoxy, z)dV
G
My =JJ[z20(xy, 2)dV
G
¢ Centre of mass

_ _ _ M M M
_ yZ XZ Xy
(x,y,Z)—( T m]

¢ If the density o'Is constant, the point

( X, Y, Z) is called the centroid.

Example

Find the centroid of a solid of constant density o

bounded below by the disk X* + y* < 4 inthe
plane Z = 0O and above by the paraboloid

z=4—x2—y2.



Solution

By symmetry, X = y = 0. So we only need to

find Z.

N |
1




My =j(£jz§(x,y,z)dv

4—x2—y?
=[[ [ z5dzdydx
R

, 4—x2_y?
-[[6 % dy dx
R 20
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E” — X2 —y) dy dx
R

5”2 212
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3270
. Mxy — T

A similar calculation gives

m=|[[d(Xy, z)dV
G

4—x2—y?

=[[ [ oJdzdydx = 8z
R0

- Mxy 3272'5/3 4
Therefore z = T 8.5 §

Thus the centroid is ( X, Y, Z ) = (0, 0, 4/3).

Question

A solid is the tetrahedron bounded by the
coordinate planes and the plane
X+ Y+ z = 2. Ifthe density

o(X, Y, 2) = 2X, find the centre of mass.



Moments of Inertia

¢ Also called the second moments

Definition

The moments of inertia of a lamina of density o
covering the planar region R about the x-, y-,
and z-axis are given by

I, = [ [y?o(x y) dA
R

I, = [ [x?8(x, y) dA
R

l, = [ [ + y*)o(x y) dA
R

Z 4




The concept of moments of inertia generalise
easily to solid regions.

Suppose the solid occupies a region R and that
the density at each point (X, y, z) in R Is given
by O(X, VY, Z). The moments of inertia of the
solid about the x-, y-, and z-axis are given by

I, = [[[(y* +2%)5(x, y,2) dV
G

I, = [[[(x* +2°)5(x, y,2) dV
G

L, = [ [[(x* + y9)3(x, Y, z) dV
G



Question 1

A lamina of density 5(X, ) = XY occupies
the region R in the plane that is bounded by the
parabola y = x° and the lines X = 2 and

y = 1. Find the moments of inertia of the
lamina about the x-axis and the y-axis.

Question 2

Find the moment of inertia of the “ice cream
cone” G cut from the solid sphere p < 1 by the

cone ¢ = % about the z-axis. (Take 5= 1)
Question 3

Find the moment of inertia of a solid
hemisphere of radius 2 with respect to its axis of
symmetry, if the density is proportional to the
distance from the axis of symmetry.



