Chapter 6 Multiple Integral
6.1 Double Integrals
6.2 Iterated Integrals
6.3 Double Integrals in Polar Coordinates
6.4 Triple Integrals

- Triple Integrals in Cartesian Coordinates
- Triple Integrals in Cylindrical Coordinates
- Triple Integrals in Spherical Coordinates
6.5 Moments and Centre of Mass

6.4 Triple Integrals

Definition

If f is a function defined over a closed, bounded solid region G, then the triple integral of f over G is defined as

$$
\iint_{G} \int f(x, y, z) d V=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}\right) \Delta V_{k}
$$

Iterated Integration

Just as for double integrals, the practical method for evaluating triple integrals is to expressed them as iterated integrals as in the following theorem:

Theorem

If $f(x, y, z)$ is continuous over a rectangle solid G : $a \leq x \leq b, c \leq y \leq d, k \leq z \leq l$, then the triple integral may be evaluated by the iterated integral

$$
\iint_{G} \int f(x, y, z) d V=\int_{k}^{l} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

The iterated integration can be performed in any order (with appropriate adjustments) to the limits of integration:

$$
\begin{array}{ll}
d x d y d z & d x d z d y \\
d y d x d z & d y d z d x \\
d z d y d x & d z d x d y
\end{array}
$$

Example

Evaluate $\iiint_{G} z^{2} y e^{x} d V$, over the rectangular box G defined by

$$
0 \leq x \leq 1,1 \leq y \leq 2,-1 \leq z \leq 1
$$

Solution

We shall evaluate the integral in the order $d x d y d z$.
$\iiint_{G} z^{2} y e^{x} d V=\int_{-1}^{1} \int_{1}^{2} \int_{0}^{1} z^{2} y e^{x} d x d y d z$
$=\int_{-1}^{1} \int_{1}^{2} z^{2} y\left[e^{x}\right]_{0}^{1} d y d z=(e-1) \int_{-1}^{1} \int_{1}^{2} z^{2} y d y d z$

$$
\begin{aligned}
& =\left.(e-1) \int_{-1}^{1} z^{2}\left[y^{2} / 2\right]\right|_{1} ^{2} d z \\
& =\frac{3}{2}(e-1) \int_{-1}^{1} z^{2} d z=e-1
\end{aligned}
$$

Integral Over General Regions

We restrict our attention to continuous functions f and to certain simple types of regions.

3 types of region:
Type I - integrating over simple $x y$-solid
Type II - integrating over simple $x z$-solid
Type III - integrating over simple $y z$-solid

Definition

A solid region G is said to be of Type 1 if it lies between the graphs of two continuous functions of x and y,
$G=\left\{(x, y, z): x, y \in R, k_{1}(x, y) \leq z \leq k_{2}(x, y)\right\}$ where R is the projection of G onto the $x y$-plane, then

$$
\iiint_{G} f(x, y, z) d V=\iiint_{R}\left[\int_{k_{1}(x, y)}^{k_{2}(x, y)} f(x, y, z) d z\right] d A
$$

Type I Regions

$\iiint_{G} f(x, y, z) d V=\iiint_{R}\left[\int_{k_{1}(x, y)}^{k_{2}(x, y)} f(x, y, z) d z\right] d A$

Type II Regions

$\iiint_{G} f(x, y, z) d V=\iint_{R}\left[\int_{g_{1}(x, z)}^{g_{2}(x, z)} f(x, y, z) d y\right] d A$

Type III Regions

$\iiint_{G} f(x, y, z) d V=\iint_{R}\left[\int_{h_{1}(y, z)}^{h_{2}(y, z)} f(x, y, z) d x\right] d A$

Example

Let G be the wedge in the first octant cut from the cylindrical solid $y^{2}+z^{2}=1$ by the planes $y=x$ and $x=0$. Evaluate

$$
\iiint_{G} z d V
$$

Solution

- Sketch the solid: choose Type I

upper bounding surface: $y^{2}+z^{2}=1$
lower bounding surface: $x y$-plane
- The z-limits of integration: Draw a line L parallel to z-axis passing through solid region.

As z increases, L enters G at $z=0$ and leaves

$$
\text { at } z=\sqrt{1-y^{2}}
$$

$$
\iiint_{G} z d V=\iint_{R}^{\sqrt{1-y^{2}}} \int_{0}[z d z] d A
$$

- The x-limits of integration: Draw a line M parallel to x-axis passing through plane region R.

As x increases, M enters R at $x=0$ and leaves at $x=y$.

- The y-limits of integration: Choose y-limits that include all lines parallel to the x-axis.

The integral is

$$
\begin{aligned}
& \iiint_{G} z d V=\int_{0}^{1} \int_{0}^{y} \int_{0}^{\sqrt{1-y^{2}}} z d z d x d y \\
& =\left.\int_{0}^{1} \int_{0}^{y} \frac{z^{2}}{2}\right|_{0} ^{\sqrt{1-y^{2}}} d x d y=\int_{0}^{1} \int_{0}^{y} \frac{1}{2}\left(1-y^{2}\right) d x d y \\
& =\left.\int_{0}^{1}\left(1-y^{2}\right) x\right|_{0} ^{y} d y=\frac{1}{2} \int_{0}^{1}\left(y-y^{3}\right) d y=\frac{1}{8}
\end{aligned}
$$

Alternatively, we evaluate the integral by integrating first with respect to x (Type III).

The solid is bounded in the back by the plane x $=0$ and in the front by the plane $y=x$.

$$
\begin{aligned}
& \iiint_{G} z d V=\iint_{R}^{y} \int_{0}^{y}[z d x] d A \\
& \iiint_{G} z d V=\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{y} z d x d y d z
\end{aligned}
$$

Question 1

In questions $1(\mathrm{a})-1(\mathrm{~b})$, evaluate the triple integral.
(a) $\int_{-1}^{1} \int_{0}^{2} \int_{0}^{x} x^{2} d y d x d z$
(b) $\int_{1}^{2} \int_{0}^{z} \int_{0}^{y} e^{x} d x d y d z$

Question 2

Sketch the solid bounded by the graph of the given equation and express $\iiint f x, y, z d V$ as iterated integrals in six different ways.

$$
x+2 y+3 z=6, x=0, y=0, z=0 .
$$

Question 3

In questions 3(a) - 3(b), evaluate the triple integral.
(a) $x=0, y=0, z=0,3 x+6 y+z=6$.
(b) $z=y^{2}, z=0, x=0, x=1, y=-1, y=1$.

Question 4

In questions 4(a) and 4(b), sketch the solid whose volume is given by the iterated integral.
(a) $\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{y+6} d z d y d x$
(b) $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} d z d y d x$

Cylindrical Coordinates

- Generalization of polar coordinates in \mathbb{R}^{3}
- We convert a triple integral from rectangular to cylindrical coordinates by writing

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

The element of integration,

$$
d V=r d r d \theta d z
$$

The function $f(x, y, z)$ is transform to

$$
f(x, y, z)=f(r \cos \theta, r \sin \theta, z)
$$

Cylindrical coordinates are convenient for representing cylindrical surfaces and surfaces for which the z-axis is the axis of symmetry.

The cylindrical coordinate system

Approximate volume $\Delta V_{k} \approx \bar{r}_{k} \Delta r \Delta \theta \Delta z$

Theorem

Let G be a solid with upper surface
$z=g_{2}(r, \theta)$ and lower surface $z=g_{1}(r, \theta)$ and let R be the projection of the solid on the $x y$ plane expressed in polar coordinates. Then if $f(r, \theta, z)$ is continuous on R, we have

$$
\iiint_{G} f(r, \theta, z) d V=\iint_{R} \int_{g_{1}(r, \theta)}^{g_{2}(r, \theta)} f(r, \theta, z) r d z d r d \theta
$$

Example

Use cylindrical coordinates to evaluate

$$
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} x^{2} d z d y d x
$$

Solution

$$
\begin{array}{r}
\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} x^{2} d z d y d x=\iiint_{G} x^{2} d V \\
= \\
=\int_{0}^{2 \pi} \int_{0}^{3 \pi} \int_{0}^{9-r^{2}} \int_{0}^{2} \cos ^{2} \theta r d z d r d \theta \\
\vdots \\
=\left.\frac{243}{3} \cos ^{2} \theta z\right|_{0} ^{9-r^{2}} d r d \theta \\
=\frac{243}{4} \int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} \theta d \theta \\
0
\end{array}
$$

Question 1

In questions 1(a)-1(c), use cylindrical coordinates to find the volume of the solid bounded by the given surfaces.
(a) $z=x^{2}+y^{2}, z=9$.
(b) $z=x^{2}+y^{2}, x^{2}+y-1^{2}=1, z=0$.
(c) $z=x^{2}+y^{2}, x^{2}+y^{2}=4, z=0$.

Question 2
In questions 2(a) - 2(b), evaluate the integrals by changing the coordinates to cylindrical coordinates.
(a) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} z d z d x d y$.
(b) $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{x} x^{2}+y^{2} d z d x d y$

Spherical Coordinates

Definition

Spherical coordinates represent a point P in space by ordered triples (ρ, ϕ, θ) in which

1. ρ is the distance from P to the origin
2. ϕ is the angle $\overrightarrow{O P}$ makes with the positive z-axis $(0 \leq \phi \leq \pi)$
3. θ is the angle from cylindrical coordinates.

The spherical coordinate system

Since $r=\rho \sin \phi$,

$$
\begin{aligned}
& x=r \cos \theta=\rho \sin \phi \cos \theta \\
& y=r \sin \theta=\rho \sin \phi \sin \theta
\end{aligned}
$$

and $z=\rho \cos \phi, x^{2}+y^{2}+z^{2}=\rho^{2}$

- The function $f(x, y, z)$ is transform to $f(x, y, z)=f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)$
- The element of integration,

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

- Triple integrals in spherical coordinates are then evaluated as iterated integrals. The integral is
$\iint_{G} \int f(\rho, \phi, \theta) d V=\iint_{G} \int_{f} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta$

Question 1

In questions 1(a)-1(b), use spherical coordinates to evaluate the integrals.
(a) $\iiint_{G} \cos \sqrt{x^{2}+y^{2}+z^{2}}{ }^{3} d V$ where G is the solid bounded by $z=\sqrt{1-x^{2}-y^{2}}$ and $z=0$.
(b) $\iiint_{G} e^{\sqrt{x^{2}+y^{2}+z^{2}}} d V$ where G is the solid bounded by $z=\sqrt{1-x^{2}-y^{2}}$ and $z=\sqrt{x^{2}+y^{2}}$.

Question 2

In questions 2(a) - 2(b), evaluate the integrals by changing the coordinates to spherical coordinates.
(a) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} x^{2}+y^{2}+z^{2} d z d y d x$.
(b) $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$.
(c) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} d z d y d x$.

6.5 Moments and Centre of Mass

Notation and Terminology

Lamina - a solid object that is sufficiently "flat" to be regarded as two-dimensional.

Density: mass per unit area, $\delta(x, y)$
Mass: quantity of matter in a body, m
Moment of mass: tendency of mass to produce a rotation about a point, line or plane

Positive moment - clockwise rotation Negative moment - counterclockwise rotation

Center of Gravity/Center of Mass:

a point where a system behaves as if all its mass is concentrated there (balance point).
Centroid: center of mass of a homogeneous body

Moment of inertia: tendency to resist a change in the rotational motion about an axis.

Definition

If δ is a continuous density function on the lamina corresponding to a plane region R, then

- Mass, $m=\iint_{R} \delta(x, y) d A$
- Moments of mass about the x - and y-axes,

$$
\begin{aligned}
M_{x} & =\iint_{R} y \delta(x, y) d A \\
M_{y} & =\int_{R} x \delta(x, y) d A
\end{aligned}
$$

- Centre of mass, $(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)$
- If the density δ is constant, the point (\bar{x}, \bar{y}) is called the centroid of the region.

Example

A lamina of density $\delta(x, y)=x^{2}$ occupies a region R bounded by the parabola $y=2-x^{2}$ and the line $y=x$. Find
(a) mass
(b) centre of mass of the lamina.

Solution

- sketch the region R
(a) mass of lamina,

$$
\begin{aligned}
& m=\iint_{R} \delta(x, y) d A=\int_{-2}^{1} \int_{x}^{2-x^{2}} x^{2} d y d x \\
&=\left.\int_{-2}^{1} x^{2} y\right|_{x} ^{2-x^{2}} d x \\
& \therefore m=\int_{-2}^{1}\left(2 x^{2}-x^{4}-x^{3}\right) d x=\frac{63}{20}
\end{aligned}
$$

(b) centre of mass, (\bar{x}, \bar{y})

$$
M_{x}=\int_{R} \int y \delta(x, y) d A
$$

$$
\begin{aligned}
& =\int_{-2}^{1} \int_{x}^{2-x^{2}} y x^{2} d y d x=\left.\int_{-2}^{1} x^{2} \frac{y^{2}}{2}\right|_{x} ^{2-x^{2}} d x \\
& \therefore M_{x}=\frac{1}{2} \int_{-2}^{1}\left(x^{6}-5 x^{4}+4 x^{2}\right) d x=-\frac{9}{7} \\
& M_{y}=\int_{R} \int^{1} x \delta(x, y) d A \\
& \quad=\int_{-2}^{1} \int_{x}^{2-x^{2}} x^{3} d y d x=\left.\int_{-2}^{1} x^{3} y\right|_{x} ^{2-x^{2}} d x \\
& \therefore M_{y}=\int_{-2}^{1}\left(2 x^{3}-x^{5}-x^{4}\right) d x=-\frac{18}{5}
\end{aligned}
$$

From (a) we found $m=\frac{63}{20}$, so the centre of mass is (\bar{x}, \bar{y}) where

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}=\frac{-18 / 5}{63 / 20}=-\frac{8}{7} \approx-1.14 \\
& \bar{y}=\frac{M_{x}}{m}=\frac{-9 / 7}{63 / 20}=-\frac{20}{49} \approx-0.41
\end{aligned}
$$

In an analogous way, we can use the triple integral to find mass and the center of mass of a solid in \mathbb{R}^{3}. The density $\delta(x, y, z)$ at a point in the solid now refers to mass per unit volume.

- Mass

$$
m=\iiint_{G} \delta(x, y, z) d V
$$

Moments

$$
M_{y z}=\iint_{G} x \delta(x, y, z) d V
$$

$$
\begin{aligned}
M_{x z} & =\iint_{G} y \delta(x, y, z) d V \\
M_{x y} & =\iint_{G} \int z \delta(x, y, z) d V
\end{aligned}
$$

Centre of mass

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{m}, \frac{M_{x z}}{m}, \frac{M_{x y}}{m}\right)
$$

- If the density δ is constant, the point $(\bar{x}, \bar{y}, \bar{z})$ is called the centroid.

Example

Find the centroid of a solid of constant density δ bounded below by the disk $x^{2}+y^{2} \leq 4$ in the plane $z=0$ and above by the paraboloid $z=4-x^{2}-y^{2}$.

Solution

By symmetry, $\bar{x}=\bar{y}=0$. So we only need to find z.

$$
\bar{z}=\frac{M_{x y}}{m}
$$

$$
\begin{aligned}
M_{x y} & =\iint_{G} z \delta(x, y, z) d V \\
& =\iint_{R}^{4-x^{2}-y^{2}} \int_{0} z \delta d z d y d x \\
& =\left.\iint_{R} \delta \frac{z^{2}}{2}\right|_{0} ^{4-x^{2}-y^{2}} d y d x \\
& =\frac{\delta}{2} \iint_{R}\left(4-x^{2}-y^{2}\right)^{2} d y d x \\
& =\frac{\delta}{2} \int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right)^{2} r d r d \theta \\
& =\frac{\delta}{2} \int_{0}^{2 \pi}-\left.\frac{1}{6}\left(4-r^{2}\right)^{3}\right|_{0} ^{2} d x \\
& =\frac{16 \delta}{3} \int_{0}^{2 \pi} d \theta
\end{aligned}
$$

$\therefore M_{x y}=\frac{32 \pi \delta}{3}$
A similar calculation gives

$$
\begin{aligned}
m & =\iiint_{G} \delta(x, y, z) d V \\
& =\iint_{R}^{4-x^{2}-y^{2}} \int_{0} \delta d z d y d x=8 \pi \delta
\end{aligned}
$$

Therefore $\bar{z}=\frac{M_{x y}}{m}=\frac{32 \pi \delta / 3}{8 \pi \delta}=\frac{4}{3}$.
Thus the centroid is $(\bar{x}, \bar{y}, \bar{z})=(0,0,4 / 3)$.

Question

A solid is the tetrahedron bounded by the coordinate planes and the plane $x+y+z=2$. If the density
$\delta(x, y, z)=2 x$, find the centre of mass.

Moments of Inertia

- Also called the second moments

Definition

The moments of inertia of a lamina of density δ covering the planar region R about the $x-, y$-, and z-axis are given by

$$
\begin{aligned}
& I_{x}=\iint_{R} y^{2} \delta(x, y) d A \\
& I_{y}=\iint_{R} x^{2} \delta(x, y) d A \\
& I_{z}=\iint_{R}\left(x^{2}+y^{2}\right) \delta(x, y) d A
\end{aligned}
$$

The concept of moments of inertia generalise easily to solid regions.

Suppose the solid occupies a region R and that the density at each point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) in R is given by $\delta(x, y, z)$. The moments of inertia of the solid about the x-, y-, and z-axis are given by

$$
\begin{aligned}
& I_{x}=\iiint_{G}\left(y^{2}+z^{2}\right) \delta(x, y, z) d V \\
& I_{y}=\iint_{G}\left(x^{2}+z^{2}\right) \delta(x, y, z) d V \\
& I_{z}=\iint_{G}\left(x^{2}+y^{2}\right) \delta(x, y, z) d V
\end{aligned}
$$

Question 1

A lamina of density $\delta(x, y)=x^{2} y$ occupies the region R in the plane that is bounded by the parabola $y=x^{2}$ and the lines $x=2$ and $y=1$. Find the moments of inertia of the lamina about the x-axis and the y-axis.

Question 2

Find the moment of inertia of the "ice cream cone" G cut from the solid sphere $\rho \leq 1$ by the cone $\phi=\frac{\pi}{3}$ about the z-axis. (Take $\delta=1$)

Question 3

Find the moment of inertia of a solid hemisphere of radius 2 with respect to its axis of symmetry, if the density is proportional to the distance from the axis of symmetry.

