Bifurcation theory

In general, it refers to a qualitative change in the behavior of a dynamical
system as some parameter on which the system depends varies continuously.

Consider a scalar ODE

Ty = f(z; 1)

(2.4)

depending on a single parameter 4 € R where f'is a smooth function. The qual-
itative dynamical behavior of a one-dimensional continuous dynamical system
is determined by its equilibria and their stability, so all bifurcations are
associated with bifurcations of equilibria. One possible definition (which does
not refer directly to the stability of the equilibria) is as follows.

Definition 2.5. A point (xg,u0) is a bifurcation point of equilibria for (2.4) if the
number of solutions of the equation f{x,;1) = 0 for x in every neighborhood of
(x0,140) 1s not a constant independent of .

The three most important one-dimensional equilibrium bifurcations are de-
scribed locally by the following ODEs:

Ty = p— 2, saddle-node;
Ty = pr — 2, transcritical;
3 .
Ty = Ur — x°, itchfork.
t = M b (2.5)
Saddle-node bifurcation
Consider the ODE
2
Ty = QU+ .
(2.6)

1 Draw a bifurcation diagram for & = pu + x*.

We have f,(z) = p+ 22, fu(z) = 2.

Equilibrium points: f,(z) =08 2 = —p & 2= +/—pu.
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u <0 Two equilibrium points at —/—pu, /—p
Fil=v/=p) = =2y/—p < 0 (asymptotically stable)
f;;(\//__l’) =2/—u>0 (unstable).

p =0 One equilibrium point at 0
f'(0) = 0 so this test is inconclusive.
zf(z) = &* so zf(z) < 0if z < 0 (stable) and zf(z) > 0if z > 0 (unstable)

0 is unstable (or asymptotically stable from below).

@ > 0  No equilibrium points.

(- - - unstable, stable)

There is a fold (saddle-node) bifurcation at p = 0, with a subecritical bifurcation point at
(0,0).

This bifurcation is called a saddle-node bifurcation. In it, a pair of hyperbolic
equilibria, one stable and one unstable, coalesce at the bifurcation point, annihilate
each other and disappear.! We refer to this bifurcation as a subcritical saddle-node
bifurcation, since the equilibria exist for values of p below the bifurcation value
0. With the opposite sign z; = p — 22, the equilibria appear at the bifurcation
point (z, ) = (0,0) as p increases through zero, and we get a supercritical saddle-
node bifurcation. Saddle-node bifurcations are the generic way that the number of
equilibrium solutions of a dynamical system changes as some parameter is varied.

The name “saddle-node” comes from the corresponding two-dimensional bi-
furcation in the phase plane, in which a saddle point and a node coalesce and
disappear, but the other dimension plays no essential role in that case and this
bifurcation is one-dimensional in nature.

11f we were to allow complex equilibria, the equilibria would remain but become imaginary.



saddle-node bifurcation
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Transcritical bifurcation

Consider the ODE

& = uz + z°.

2 Draw a bifurcation diagram for & = pz 4 z°.

We have f,(z) = px + 2%, fl(z) = p+ 2z

Equilibrium points: f,(z) =0 uz+2’ =0 2=0, —pu.

i =0 One equilibrium point at z = 0.
J5(0) = 0 s0 0 is a non-hyperbolic EP. Graph of flow fy(z) = 2%
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EP is asymptotically stable from below.

pn# 0  Two equilibrium points: 0, —pu
£1.(0) = pso f3(0) < 0if u < 0 (stable) and f5(0) > 0 if 4 > 0 (unstable).
Fi(=u) = —pso f,(—p) <0if p >0 (stable) and f/(—p) > 0 if 4 < 0 (unstable).
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There is a transcritical bifurcation at (0,0).

This transcritical bifurcation arises in systems where there is some basic “triv-
ial” solution branch, corresponding here to x = 0, that exists for all values of the
parameter p. (This differs from the case of a saddle-node bifurcation, where the
solution branches exist locally on only one side of the bifurcation point.). There is
a second solution branch x = p that crosses the first one at the bifurcation point
(x, 1) = (0,0). When the branches cross one solution goes from stable to unstable
while the other goes from stable to unstable. This phenomenon is referred to as an
“exchange of stability.”

transcritical bifurcation

u
A




Pitchfork Bifurcation

3 Draw a bifurcation diagram for & = px — z°.

We have f,(z) = pr — 2, fi(z) = p—32%.
Equilibrium points: fu(z) =0 s(p—2?) =0 2c=0, 2=+ (u>0).

g <0 One equilibrium point at z = 0.

[i(0) = p < 0if p < 0so EP is stable if 4 < 0. When p = 0, EP is non-hyperbolic. Draw
graph of flow fo(z) = —2*:
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so EP z = 0 is stable for u < 0.

p >0 Three equilibrium points at z = 0, +p.
!

7(0) = > 0if p1> 0 s0 0 is unstable.
[i.(£y/1) = —2p < 0 so both EPs are stable.
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There is a supercritical pitchfork bifurcation at (0,0).



The system has one globally asymptotically stable equilibrium x = 0 if u <0,
and three equilibria x = 0, = £,/ if p is positive. The equilibria £,/p are stable
and the equilibrium x = 0 is unstable for © > 0. Thus the stable equilibrium 0
loses stability at the bifurcation point, and two new stable equilibria appear. The
resulting pitchfork-shape bifurcation diagram gives this bifurcation its name.

This pitchfork bifurcation, in which a stable solution branch bifurcates into
two new stable branches as the parameter p is increased, is called a supercritical
bifurcation. Because the ODE is symmetric under x — —x, we cannot normalize
all the signs in the ODE without changing the sign of ¢, which reverses the stability
of equilibria.

Up to changes in the signs of x and pu, the other distinct possibility is the
subcritical pitchfork bifurcation, described by

r, = px + 5.

In this case, we have three equilibria x = 0 (stable), x = +,/—u (unstable) for
1 < 0, and one unstable equilibrium z = 0 for g > 0.

A supercritical pitchfork bifurcation leads to a “soft” loss of stability, in which
the system can go to nearby stable equilibria x = 4-,/p when the equilibrium z = 0
loses stability as p passes through zero. On the other hand, a subcritical pitchfork
bifurcation leads to a “hard” lose of stability, in which there are no nearby equilibria

and the system goes to some far-off dynamics (or perhaps to infinity) when the
equilibrium z = 0 loses stability.

pitchfork bifurcation
supercritical subcritical
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Bifurcations in 2d

Like in 1d, in 2d existence and stability of fixed points depend on the parameters of
the system. In contrast to 1d, however, now also oscillations can be switched on and
off. As an example, look at the substrate-depletionoscillator.

There are three types of bifurcations in 2d:

1. 1d-like bifurcations (4 types)

2. Hopf bifurcation (local switch on/off of oscillations)
3. global bifurcations of cycles (3 types)

Hopf Bifurcation

In the mathematical theory of bifurcations, a Hopf bifurcation is a critical point where a
system's stability switches and a periodic solution arises." More accurately, itis a local
bifurcation in which a fixed point of a dynamical system loses stability, as a pair

of complex conjugate eigenvalues (of the linearization around the fixed point) cross

the complex plane imaginary axis.

(The Hopf bifurcation is a catastrophe in which as one gradually
changes the parameters in an ordinary differential equation, a fixed
point suddenly changes to a limit cycle)

It is easiest to understand the idea by considering an example.
There are various differential equations that exhibit a Hopf
bifurcation, but here’s the simplest:

(1." ) 34
— = —y+ fx —x(x* +y°
= v+ fx — x(x° + )

% = x4+ fy -y +y)

Here x and y are function in time, t so these equations describe a
point moving around on the plane. It's easier to see what’s going on
in polar coordinates:

dr 3
i pr—r

dg ‘
dt


https://en.wikipedia.org/wiki/Bifurcation_theory
https://en.wikipedia.org/wiki/Critical_point_(mathematics)
https://en.wikipedia.org/wiki/Periodic_function
https://en.wikipedia.org/wiki/Hopf_bifurcation#cite_note-1
https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Complex_conjugate
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Linearization
https://en.wikipedia.org/wiki/Complex_plane

The angle ¢l goes around at a constant rate while the radius n does something more interesting. When
B < ()}, you can see that any solution spirals in towards the origin. Or, if it starts at the origin, it stays there.
So, we call the origin a stable equilibrium.

Here's a typical solution for f = —1/4| drawn as a curve in the x| plane. As time passes, the solution spirals
in towards the origin:

. &
N/

b

The equations are more interesting for # > 0. Then dr/dt = 0l whenever

5
ﬂr-r3=d (%)

This has two solutions, r = Oland r = \//_4 Since r = 0lis a solution, the origin is still an equilibrium. But now
it's not stable: if nis between 0l and /, we'll have fir — * > 0}, so our solution will spiral out, away from the
origin and towards the circle r = \/ﬂ. So, we say the origin is an unstable equilibrium. On the other hand,
if nstarts out bigger than \/F, our solution will spiral in towards that circle.

Here's a picture of two solutions for f = 1|:
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The red solution starts near the origin and spirals out towards the circle r = \/ﬂ The green solution starts

outside this circle and spirals in towards it, soon becoming indistinguishable from the circle itself. So, this
equation describes a system where x and y quickly settle down to a periodic oscillating behavior.

Since solutions that start anywhere near the circle r = \/E will keep going round and round getting closer to
this circle, it's called a "stable limit cycle".

This is what the Hopf bifurcation is all about: we’ve got a dynamical system that depends on a parameter,

and as we change this parameter, a stable fixed point become unstable, and a stable limit cycle forms
around it.
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Supercritical Hopf Bifurcation
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2D Bifurcation

Saddle-Node Bifurcation
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Transcritical Bifurcation
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T = pr— %, Y= —y.
Pitchfork Bifurcation 3
T = pr —°, y=-y
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