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Chapter 3

Discrete Dynamical
Systems(DDS)

3.1 Introduction

In this chapter we will examine discrete dynamical systems that are governed by differ-
ence equation of the form

xn+1 = f(xn), x0 specified. (3.1)

We will develop techniques for analysing nonlinear difference equations and explaining
some of the naturally arising phenomena such as bifurcation, chaos and fractals. The
emphasis will be on one-dimensional discrete dynamical systems, and therefore the
function f in (3.1) will usually be a real-valued function of a real variable. However,
we shall also consider more abstract cases in order to introduce some of the notation,
terminology and concepts associated with discrete dynamical systems and iterated maps.

For a DDS, we suppose that the evolution through time of a particular system occurs
in discrete steps, e.g. in steps of size △t. If we write ϕ(x, n) to denote the value at time
t = n△t of the system that took the value x at time t = 0, then for one-dimensional
DDS, ϕ is defined on R× N. Any such function ϕ satisfying

1. ϕ(x, 0) = x, ∀x ∈ R

2. ϕ (ϕ(x, n),m) = ϕ(x, n+m) ∀x ∈ R, ∀n,m ∈ N
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DDS example
As an example of how a one-dimensional DDS might be generated, consider the function
(or map) f : R → R which satisfies the first-order difference equation (or iteration)

xn+1 = f(xn), x0 specified.

For n ∈ N, we define the nth iterate or n-fold composition of f to be

fn = f ◦ f ◦ f ◦ f · · · ◦ f (n terms).

Note that fn does not mean “f to the power of n” here, but n application of f

f2(x) = f(f(x)), f3(x) = f
(
f2(x)

)
= f(f(f(x))), etc

If we also define f0 by f0(x) = x ∀x ∈ R, it is then follows that

1. f0(x) = x ∀x ∈ R

2. fn (fm(x)) = fn+m(x) ∀x ∈ R, ∀n,m ∈ N.

Writing
ϕ(x, n) = fn(x) ∀x ∈ R, ∀n ∈ N

we see that ϕ(x, n), satisfies the properties of a a discrete dynamical system.

When faced with equation (3.1), the main objectives are namely

1. Given an initial value x0, determine the asymptotic (long term) behaviour of xn
(i.e what happens to xn as n → ∞).

2. Identify initial values which give rise to sequences having the same asymptotic
behaviour.

3. Examine the stability of solutions, i.e determine whether a small change to the
initial value x0 leads to only a small change in each xn, n = 1, 2, · · ·
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3.2 Metric Spaces

Some of the terminology and concepts that are associated with discrete dynamical sys-
tem generated by equation (3.1) will be introduced.

Definition 1 A metric space consists of a non-empty set X together with a metric
d : X ×X → R such that

1. d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y in X.

2. d(x, y) = d(y, x) ∀x, y ∈ X.

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X (the triangle inequality)

Definition 2 (Convergence of Sequence) Let {xn} ⊂ X where X is a metric space
with metric d

1. xn → x in X as n → ∞ if, for any given ϵ > 0, ∃N ∈ IN such that

d(xn, x) < ϵ ∀n ≥ N.

2. {xn} is a Cauchy sequence in X, if for any given ϵ > 0, ∃N ∈ N, such that

d(xn, xm) < ϵ ∀n,m ≥ N.

3. X is a complete metric space if every cauchy sequence in X is convergent.

Definition 3 (Continuity) Let X,Y be metric spaces with metric d1, d2 respectively
and let f : X → Y be a function.

1. f is continuous at x0 ∈ X if, for any given ϵ > 0, ∃δ > 0 such that

d1(x, x0) < δ ⇒ d2(f(x), f(x0)) < ϵ.

2. f is continuous if f is continuous at each point in X

3. f is a homeomorphism if f is 1−1, continuous, onto and has continuous inverse
f−1 : Y → X.

Definition 4 Let G ⊂ X where X is a metric space with metric d. Then G is said
to be dense in X if, for any given x ∈ X and ϵ > 0, ∃y ∈ G such that d(x, y) < ϵ.
Equivalently, G is dense in X if, for any given x ∈ X, ∃ {xn} ⊂ G such that xn → x in
X as n → ∞. We write Ḡ = X and Ḡ the closure of G.
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We introduce a specific metric space and mapping which we will use later to illustrate
some ideas. This is the metric space comprising the set

Σ2 = {s = {sk}∞k=0 , sk ∈ {0, 1} , k = 0, 1, 2, · · ·}

(i.e the set of all infinitely long sequences comprising ones and zeros) and the metric d
defined on Σ2 × Σ2 by

d(s, t) =
∞∑
k=0

|sk − tk|
2k

.

Lemma 1 Let {sk}, {tk} ∈ Σ2. Then

1. If sk = tk for k = 0, 1, 2, · · · , n then d(s, t) ≤ 1
2n .

2. If d(s, t) < 1
2n , then sk = tk for k = 0, 1, 2, · · · , n.

Proof

1. If sk = tk for k = 0, 1, 2, · · · , n then

d(s, t) =
n∑

k=0

|sk − sk|
2k

+
∞∑

k=n+1

|sk − tk|
2k

≤
∞∑

k=n+1

1

2k
=

1
2n+1

1− 1
2

=
1

2n

2. Let d(s, t) < 1
2n but suppose si ̸= ti for some i ∈ {0, 1, 2, · · · , n}. Then

d(s, t) ≥ 1

2i
≥ 1

2n
.

This is a contradiction and so sk = tk for k = 0, 1, 2, · · · , n.

Theorem 1 (Shift map on Σ2) Let σ : Σ2 → Σ2 be defined by

σ ({sk}∞k=0) = {sk+1}∞k=0 ,

that is,

σ ({s0, s1, s2, · · ·}) = {s1, s2, · · ·} .

Then σ is continuous on Σ2.

Proof Given s, t ∈ Σ2 and ϵ > 0, we must show that ∃ δ > 0 such that

d(s, t) < δ ⇒ d(σ(s), σ(t)) < ϵ.
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For a given ϵ > 0, choose N ∈ N such that 0 < 1
2N

< ϵ (this can be done as 1
2n → 0 as

n → ∞ ) and set δ = 1
2N+1 . It then follows that

d(s, t) < δ ⇒ d(s, t) <
1

2N+1

⇒ sk = tk for k = 0, 1, 2, · · · , N + 1 ( Lemma 1(2))

⇒ sk+1 = tk+1 for k = 0, 1, 2, · · · , N

⇒ d(σ(s), σ(t)) ≤ 1

2N

⇒ d(σ(s), σ(t)) < ϵ.

Examples 3A

1. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be in Rn. Show that the function
d : Rn × Rn → R be defined by

d(x,y) =

[
n∑

i=1

(xi − yi)
2

] 1
2

is a metric on Rn.

solution:
We have

(a) d(x,y) ≥ 0 d(x,y) and d(x,y) = 0 ⇐⇒ x = y in Rn;

(b) d(x,y) = d(y,x) ∀ x,y ∈ Rn ;

(c) d(x,y) =
[∑n

i=1 (xi − yi)
2
] 1

2
=

[∑n
i=1 ((xi − zi) + (zi − yi))

2
] 1

2

≤
[∑n

i=1 (xi − zi)
2
] 1

2
+

[∑n
i=1 (zi − yi)

2
] 1

2
(by the triangle inequality)

= d(x, z) + d(z,y) ∀ x,y, z ∈ Rn

2. Show that the set Q of rational numbers is dense in R

solution:
From standard results on real numbers, given any x ∈ R and ϵ > 0, there exists

a rational number y =
p

q
such that y ∈ (x − ϵ, x + ϵ) (so that d(x, y) < ϵ) and

therefore the set Q is dense in R.
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3. Let S1 denote the unit circle in the plane, i.e. S1 =
{
(x, y) : x2 + y2 = 1

}
. Show

that the function on S1 defined by

d(P,Q) = length of arc connecting P to Q, P,Q ∈ S1

is a metric.

solution:

(a) d(P,Q) ≥ 0 ∀P,Q ∈ S1 and d(P,Q) = 0 ⇐⇒ P = Q in S1

(b) d(P,Q) = d(Q,P ) ∀P,Q ∈ S1

(c) d(P,Q) ≤ d(P,R) + d(R,Q) ∀P,Q,R ∈ S1

4. Let Σ2 = {s = {sk}∞k=0 , where sk ∈ {0, 1} , for k = 0, 1, 2, · · ·} and define d on
Σ2 × Σ2 by

d(s, t) =

∞∑
k=0

|sk − tk|
2k

, s = {sk} , t = {tk} ∈ Σ2.

Show that d is a metric on Σ2.

solution:
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3.3 Iterated Maps: General Definitions and Results

Let X be a metric space with metric d and let f : X → X be a continuous function.
We are interested in the dynamical system generated by the difference equation (3.1).
If we let x0 = x ∈ X and again denote the nth iterate of f by fn then we can write

xn = fn(x) n = 0, 1, 2, · · ·

where f0 is defined by f0(x) = x. Functions f which generate dynamical system via
equation of the form (3.1) are usually called mappings or maps. In this chapter we
will present some key definitions for properties of iterated maps.

3.3.1 Orbits and Periodicity

We begin by introducing the idea of orbits.

Definition 5 (Orbits) Let x ∈ X, and let f : X → X.

1. γ+(x) = {fn(x) : n = 0, 1, 2, · · ·} is called the positive (or forward) semi-orbit
of x under f

2. If f is a homeomorphism then

γ−(x) =
{
f−n(x) : n = 0, 1, 2, · · ·

} (
f−n ≡ nthiterate of f−1

)
is called the negative (or backward) semi-orbit of x under f .

3. γ(x) = {fn(x) : n ∈ Z} = γ−(x) ∪ γ+(x) is called the full orbit of x under f .

Remarks

1. We will follow the convention that only distinct points from the sequence
x, f(x), f2(x), · · · are included in γ+(x) (and similarly for γ−(x) and γ(x)).

2. If we define ϕ(x, n) ≡ fn(x) then

γ+(x) = {ϕ(x, n) : n ∈ N} .

Similar expression can be obtained for the negative semi-orbit and full orbit.

One type of orbits which are particularly simple are periodic orbits.

Definition 6 (Fixed and Periodic Points) Let f : X → X.

1. p ∈ X is a fixed point (equilibrium point) for f if f(p) = p. In this case

fn(p) = p ∀n = 0, 1, 2, · · ·

and so γ+(p) = {p}.
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2. The set of fixed points for f is denoted by

Fix(f) = {p ∈ X : f(p) = p} .

3. If p1 and p2 are such that

f(p1) = p2, f(p2) = p1,

then the points p1, p2 ∈ X form a period 2-cycle for f . We call p1 and p2
periodic points of period 2 for f . Note that

f2(p1) = p1 and f2(p2) = p2

so p1, p2 ∈ Fix
(
f2

)
.

Also, γ+(p1) = γ+(p2) = {p1, p2}. This is a periodic orbits of period 2.

4. More generally, p ∈ X is called a periodic point of period n if fn(p) = p. In
addition, it has prime period n if fk(p) ̸= p for any k = 1, 2, · · · , n− 1. In such
a case

γ+(p) =
{
p, f(p), f2(p), · · · , fn−1(p)

}
is called a periodic orbit of prime period n or, more simply, an n-cycle.

5. The set of all periodic points of (not necessarily prime) period n is denoted by

Pern(f) = {p ∈ X : fn(p) = p}

and

Per(f) =

∞∪
n=1

Pern(f).

Remarks

1. If p ∈ Pern(f) then f(p), f2(p), · · · , fn−1(p) are also in Pern(f).

2. Pern(f) = Fix(fn).

3. p ∈ Pern(f) ⇒ p ∈ Perkn(f) ∀k = 1, 2, · · ·
In particular, Fix(f) ⊆ Pern(f) ∀n ∈ N

In practice, fixed points can be found algebraically (by solving the equation f(x) = x))
or graphically (by finding any intersections of the graph y = f(x) with a straight line
y = x)

Examples 3B
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1. Let f : R → R, f(x) = x2 − 1. Find the fixed points of f(x) and f2(x) and write
down γ+(

√
2) under f .

Solution: To find the fixed points

f(x) = x

x2 − 1 = x

x2 − x− 1 = 0

x =
1±

√
5

2

So Per1(f) = Fix(f) =

{
1±

√
5

2

}

Fixed point for f2(x)

f2(x) = x

f(f(x)) = f(x2 − 1) = x

(x2 − 1)2 − 1 = x

x4 − 2x2 − x = 0

(x2 − x− 1)(x2 + x) = 0

x = 0,−1,
1±

√
5

2

x2 − x− 1 must be a factor since two solutions of f2(x) = x are
1±

√
5

2
.

Note that 0,−1 have prime period 2 and form a 2-cyle (f(0) = −1, f(−1) = 0).

For γ+(
√
2) under f , we need the sequence

{
f0(

√
2), f1(

√
2), f2(

√
2), · · ·)

}
. As

f(x) = x2 − 1, this gives γ+(
√
2) =

{√
2, 1, 0,−1, 0,−1, · · ·

}
refer to maple ex3Bno1 for analysis using graph

2. Let f : R → R, f(x) = x3. Find Per(f).

Solution:

f(x) = x ⇔ x3 = x ⇔ x3 − x = 0 ⇔ x(x2 − 1) = 0 ⇔ x = 0,±1
So Per1(f) = Fix(f) = {0,±1}.
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In general

fn(x) = x ⇔ x3n = x ⇔ x3
n − x = 0 ⇔ x

(
x3

n−1 − 1
)
= 0

Since 3n − 1 is even, x = 0,±1.
So Pern(f) = {0,±1} = Fix(f) ∀n and Per(f) = Fix(f),

3. Let fµ : R → R, fµ(x) = µx(1−x), µ > 0. This is known as the logistic function.
Find Per1(fµ) and Per2(fµ).

Solution:

fµ(x) = x

µx(1− x) = x

x(µ− µx− 1) = 0 ⇒ x = 0 or x =
µ− 1

µ

so

Per1(fµ) = Fix(fµ) =

{ {
0, µ−1

µ

}
µ ̸= 1

{0} µ = 1

f2
µ(x) = x

fµ(µx(1− x)) = x

µ[µx(1− x)](1− µx(1− x)) = x

µ2x(1− x)(1− µx(1− x))− x = 0

µ3x4 − 2µ3x3 + µ3x2 + µ2x2 − µ2x+ x = 0

x(µ− µx− 1)
(
µ2x2 − µ2x− µx+ µ+ 1

)
= 0

x(µ− µx− 1) must be a factor since two solutions of f2
µ(x) = x are Per1(fµ).

x = 0,
µ− 1

µ
or µ2x2 − (µ2 + µ)x+ µ+ 1 = 0.

The second equation gives

x =
µ2 + µ±

√
(µ2 + µ)2 − 4µ2(µ+ 1)

2µ2
=

µ+ 1±
√

µ2 − 2µ− 3

2µ
≡ q+µ , q

−
µ

Thus fµ has a 2-cycle
{
q+µ , q

−
µ

}
if µ2 − 2µ − 3 = (µ − 3)(µ + 1) > 0, that is, if

µ < −1 or µ > 3. Since we assume µ > 0, so if µ > 3, fµ has a 2-cycle.

[see maple ex3BFP]
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3.3.2 Stability and ω-Limit Sets

Definition 7 (Attracting and Repelling Fixed points) Let f : X → X where X
is a metric space with metric d.

1. Let p ∈ Fix(f). Then

(a) p is an attracting (or locally asymptotically stable) fixed point if ∃ϵ > 0
such that
d(x, p) < ϵ ⇒ fk(x) → p as k → ∞.

(b) p is a repelling (or unstable) fixed point if ∃ϵ > 0 such that
0 < d(x, p) < ϵ ⇒ d

(
fk(x), p

)
> ϵ for some (but not necessarily all) values

of k

2. The 2-cycle p1, p2 is an attracting 2-cycle for f if ∃ϵ1, ϵ2 > 0 such that

d(x, p1) < ϵ1 ⇒ f2k(x) → p1, f
2k+1(x) → p2

d(x, p2) < ϵ2 ⇒ f2k(x) → p2, f
2k+1(x) → p1

}
as k → ∞

Attracting n-cycles (n > 2) can be defined similarly.

3. A set S ⊂ X is said to be

(a) positively invariant under f if f(S) ⊆ S.

(b) negatively invariant under f if S ⊆ f(S).

(c) invariant under f if S = f(S). Note: f(x) = {y = f(x) : x ∈ S}

4. A set S ∈ X is an attracting set (or attractor) for f if

(a) S is invariant (i.e f(S) = S)

(b) ∃ϵ > 0 such that

dis(x, S) < ϵ ⇒ dist
(
fk(x), S

)
→ 0 as k → ∞,

where dist(x, S) = inf {d(x, y) : y ∈ S}

Remarks

1. Not all fixed points can be categorized as either attracting or repelling; e.g some
are weakly attracting (or semi-stable): this will be discussed further later.

2. By definition, if p1, p2 form an attracting 2-cycle for f , then p1 and p2 are both
attracting fixed points for f2. When the 2-cycle consists of repelling fixed points
for f2, we say that p1 and p2 form a repelling or unstable 2-cycle. Similar
comments apply to n-cycles (n > 2) i.e. the n-cycle {p1, p2, p3, · · · , pn} is attracting
(repelling) if each pi is an attracting (repelling) fixed point of fn.
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3. Suppose that S is invariant under f and let ϕ(x, n) ≡ fn(x). Then it follows
immediately that

ϕ(S, n) = S ∀n ∈ N.

4. Expressed more simply, a set S ⊂ X is an attractor if fn(x) → S as n → ∞ for
all pint x “sufficiently close” to S, where fn(x) → S as n → ∞ means that given
δ > 0, ∃N such that each fn(x) is within δ of some point yn in S ∀n ≥ N . In
addition, x ∈ S ⇒ γ+(x) ⊂ S. Simple examples of attractors are

(a) S = {p} where p is an attracting fixed point.

(b) S = {p1, p2} where p1, p2 form an attracting 2-cycle.

(c) S = {p1, p2, · · · , pn} where p1, p2, · · · , pn form an attracting n-cycle.

Definition 8 (Stability and ω-limit Sets) Let f : X → X, where X is a metric
space with metric d.

1. x ∈ X is forward asymptotic to p ∈ Fix(f) if fk(x) → p as k → ∞. The
stable set of p is defined by

W s(p) =
{
x ∈ X : fk(x) → p as k → ∞

}
.

Similarly, x ∈ X is forward asymptotic to p ∈ Pern(f) if

fnk(x) = (fn)k (x) → p as k → ∞,

and stable set of p is defined by

W s(p) =
{
x ∈ X : fnk(x) → p as k → ∞

}
.

2. If f−1(x) exists, we say that

(a) x ∈ X is backward asymptotic to p ∈ Fix(f) if

f−k(x) =
(
f−1

)k
(x) → p as k → ∞

(b) x ∈ X is backward asymptotic to p ∈ Pern(f) if

f−nk(x) → p as k → ∞.

The unstable sets of p ∈ Fix(x) and p ∈ Pern(f) are defined by

W u(p) =
{
x ∈ X : f−k(x) → p as k → ∞

}
W u(p) =

{
x ∈ X : f−nk(x) → p as k → ∞

}
respectively
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3. y ∈ X is an ω-limit points of x ∈ X if there exists a subsequence {fnr(x)} of
{fn(x)} such that fnr(x) → y as nr → ∞. The ω-limit set ω(x) of x is the set
of all ω-limit points of x. If f−1 exists, then we can also define α-limit points and
the α-limit set in an analogous manner simply by replacing f by f−1. Note that,
in terms of discrete dynamical systems

ϕ(x, n) ≡ fn(x)

Theorem 2 (Results on ω-limit sets) Let f : X → X where X is a metric space
with metric d.

1. ω(x) is positively invariant under f for each x ∈ X i.e. f(ω(x)) ⊆ ω(x). In some
cases it can be shown that ω(x) is invariant under f . i.e f(ω(x)) = ω(x), e.g.
when X = Rn and γ+(x) is bounded.

2. Let p ∈ Fix(f). Then

(a) ω(p) = {p}
(b) ω(x) = {p} ∀x ∈ W s(p)

3. Let S = {p1, p2, · · · , pk} be a k-cycle for f . Then

(a) ω(p1) = ω(p2) = · · · = ω(pk) = S

(b) ω(x) = S whenever x ∈ W s(pi) for some pi ∈ S

Proof

1.

y ∈ ω(x) ⇒ fnr(x) → y as nr → ∞ for some sequence {fnr(x)}
⇒ f (fnr(x)) → f(y) as nr → ∞ since f is continuous

⇒ fnr+1(x) → f(y) as nr + 1 → ∞
⇒ f(y) ∈ ω(x).

2. (a) p ∈ Fix(f) ⇒ fn(p) = p ∀n = 0, 1, 2, · · · ⇒ ω(p) = {p}
(b)

x ∈ W s(p) ⇒ fn(x) → p as n → ∞
⇒ every subsequence of {fn(x)} also converges to p

⇒ ω(x) = {p} .

3. (a) Let S = {p1, p2, · · · , pk} be a k-cycle for f . Then

{fn(pi)}∞n=0 = {pi, pi+1, · · · , pk, p1, · · · , pi−1|pi, pi+1, · · · , pi−1| · · ·}
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and so the only possible convergent subsequences are those that ultimately
are constant. i.e. of the form

{ finitely many terms pj , pj , pj , · · ·}

for some fixed pj ∈ S. Hence ω(pi) = S.

(b) x ∈ W s(pi) ⇒ fnk(x) → pi, f
nk+1(x) → pi+1, · · · , fnk+k−1(x) → pi−1.

Consequently the only possible convergent subsequences of {fn(x)∞n=0} are
of the form{
finitely many terms, infinitely many terms from

{
fnk+j(x)

}
(for fome fixed j)

}
and so ω(x) = S.

Definition 9 (Aperiodicity) If ω(x) contains infinitely many points then γ+(x) is
said to be aperiodic.

Together, these concepts can be used to analyze the behaviour of difference equations,
either analytically or using graphs. One important idea for the latter approach is a
so-called cobweb diagram, which is constructed as follows: given xn+1 = f(xn) and
an initial condition x0, draw a vertical line from x0 until it intersects the graph of f
(the height is output x1). This could be repeated to get x2, but it is more convenient
to draw a horizontal line until it intersects the diagonal line xn+1 = xn, and then move
vertically to the curve again. Repeat the process n times to obtain the first n points of
the orbit.

Examples 3C

3.3.3 The Banach Contraction Mapping Principle

To end this chapter, we quote an important theorem which guarantees the existence
and uniqueness of fixed points of certain self maps of metric spaces.

Theorem 3 (Banach Contraction Mapping Principle) Let X be a complete met-
ric space with metric d and let f : X → X be a function with the property that

d(f(x), f(y)) ≤ αd(x, y), ∀x, y ∈ X

for some constant α < 1 (f is said to be a contraction). Then f has exactly one fixed
point p ∈ X. Also W s(p) = X since fn(x) → p as n → ∞ ∀x ∈ X.

Corollary 1 If f : X → X is a contraction with fixed point p, then Per(f) = {p}.
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Corollary 2 Let f ∈ C1[a, b] that is, f and f ′ are both continuous on [a, b] with
f([a, b]) ⊆ [a, b] and |f ′(x)| < 1 ∀x ∈ [a, b]. Then f has exactly one fixed point p ∈ [a, b].
Moreover Per(f) = p and W s(p) = [a, b]

Proof
First note that [a, b] equipped with the metric d(x, y) = |x − y|, is a complete metric
space. Since f ′ is continuous on [a, b] and |f ′(x) < 1| ∀x ∈ [a, b], there exists α < 1 such
that |f ′(x)| ≤ α ∀x ∈ [a, b]. Moreover, by the Mean Value Theorem (MVT)

|f(y)− f(x)| = |f ′(c)||y − x|, for some c between x and y,

≤ α|y − x| ∀x, y ∈ [a, b]

Hence f is a contraction on [a, b] and so the result follows from the contraction mapping
principle.

Examples 3D Let I = [0, 1] and consider the logistic map fµ(x) = µx(1 − x), x ∈ I;
µ > 0. Show that fµ : I → I if 0 < µ ≤ 4. Find any values of µ for which fµ is
a contraction and identify any fixed points. What deduction can you make about the
asymptotic behaviour of fµ in this case?

Solution: Since

0 ≤ fµ(x) ≤ fµ

(
1

2

)
=

µ

4
∀x ∈ I,

it follows that fµ : I → I if 0 < µ ≤ 4. Also |f ′
µ(x)| = |µ− 2µx| = µ|1− 2x| ≤ µ ∀x ∈ I.

From example 3B, we know that the fixed points are

Fix(fµ) =

{
0,

µ− 1

µ

}
so fµ has

{
2 fixed points in I if µ > 1
1 fixed point in I if 0 < µ ≤ 1

Hence for 0 < µ < 1 we can state that fn
µ (x) → 0 as n → ∞ ∀x ∈ I (by corollary 2).

Furthermore, no x ∈ (0, 1] is in Perk(fµ) for any k. Because if x ∈ [0, 1] is in Perk(fµ),
then fn

µ (x) will NOT go to 0 and n → ∞, which gives a contradiction.


