
Chapter 4

One-dimensional maps

In this chapter we will concentrate on the difference equation

xn+1 = f(xn), x0 ∈ I

where I ⊆ R and f : I → I, i.e. we restrict ourselves to the case where the metric
space X is an interval on the real line. When f is continuous on I we write f ∈ C(I).
Similarly f ∈ Cn(I) denotes the fact that the first n derivatives of f (with respect to
x) are all continuous on I.

4.1 Stability of Fixed Points and Cycles

Our aim in this section is to develop techniques that can be used to determine whether a
fixed point or a cycle is stable or not. We begin by introducing the notion of hyperbolic
fixed points and cycles.

Definition 10 Let f ∈ C1(I).

1. p ∈ Fix(f) is a hyperbolic fixed point if |f ′(p)| ̸= 1; when |f ′(p)| = 1, p is an
indifferent (or non-hyperbolic) fixed point.

2. p ∈ Pern(f) is a hyperbolic period n point if |f ′(p)| ̸= 1; otherwise p is an
indifferent period n point.

Theorem 4 Let p1, p2, · · · , pn form an n-cycle for the map f : I → I where f ∈ C1(I).
Then

|(fn)′(p1)| = |(fn)′(p2)| = · · · = |(fn)′(pn)|
and so if one point in the cycle is hyperbolic, so are all of the other points in the cycle.

Proof Consider (fn)′(p1). By the chain rule,

(fn)′(p1) = f ′(fn−1(p1))(fn−1)′(p1)
= f ′(fn−1(p1))f ′(fn−2(p1))(fn−2)′(p1)
= · · ·
= f ′(fn−1(p1))f ′(fn−2(p1)) · · · f ′(f(p1))f ′(p1)
= f ′(pn)f ′(pn−1)f ′(pn−2) · · · f ′(p2)f ′(p1)
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Applying the same argument to each pk gives the stated result since we obtain

(fn)′(pk) =
n∏

i=1

f ′(pi), k = 1, 2, · · · , n.

For a fixed point p, we have xn+1 = f(xn) = f(p) = p so the orbit remains at p for all
future iterations. To examine stability of a fixed point p, we consider a nearby orbit
xn = p + ξn, and ask whether this orbit is attracted to or repelled by p, that is, does
the deviation ξn grow or decay as n increases? Mathematically, this means considering
the linearization of the function f about a fixed point p.

Suppose f is differentiable on an open interval containing a fixed point p. If x0 is
sufficiently close to p then

f(x0) ≈ p+ f ′(p)(x0 − p) ⇒ x1 − p ≈ f ′(p)(x0 − p) or ξ1 ≈ f ′(p)ξ0.

Similarly,

f(x1)− p ≈ f ′(p)(x1 − p) ⇒ x2 − p ≈ f ′(p)(x1 − p) or ξ2 ≈ f ′(p)ξ1,

and, in general
ξk+1 ≈ f ′(p)ξk, k = 0, 1, 2, · · ·

Thus, in terms of the small perturbation ξn, we can make the linear approximation

ξn+1 = aξn

where ξn = xn − p and a = f ′(p).

Theorem 5 Let p ∈ Fix(f) where f : I → I is such that f is continuous on I and
continuously differentiable on an open bounded interval J ⊆ I containing p.

1. If |f ′(p)| < 1 then p is an attracting fixed point (or sink).

2. If |f ′(p)| > 1 then p is a repelling fixed point (or source).

proof

1. We have f ∈ C1(J) and |f ′(p)| < 1 so ∃ϵ > 0 : |f ′(x)| ≤ α < 1 ∀x ∈ [p−ϵ, p+ϵ] ∈ J
. Let U = (p− ϵ, p+ ϵ). Then

x ∈ U ⇒ |f(x)− p| = |f(x)− f(p)|
= |f ′(c)||x− p| ( for some point c between p and x)

≤ α|x− p| < ϵ.
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Hence f(U) ⊆ U . Similarly

|fk(x)− p| = |f(fk−1(x)− f(p)| = |f ′(c)||fk−1(x)− p|
≤ α|fk−1(x)− p|
≤ · · · ≤ αk|x− p| → 0 as k → ∞.

Hence fk(x) → p as k → ∞ ∀x ∈ U and so p is an attracting fixed point.

Alternatively: x ∈ |p − ϵ, p + ϵ| ⇒ |f(x) − p| ≤ ϵ as above so f(|p − ϵ, p + ϵ|) ⊆
|p− ϵ, p+ ϵ|. Therefore it follows that f is a contraction on |p− ϵ, p+ ϵ| and hence
fk(x) → p as k → ∞ (by the contraction mapping principle).

2. Omitted

Notes:

1. When f ′(p) < 1,the analysis used in the proof of the previous theorem shows that
there exists an open interval U containing p satisfying

(a) f(U) ⊆ U ,

(b) U ⊆ W s(p).

The largest such U is called the local stable set of p, and is denoted by W s
loc(p).

The corresponding set associated with a repelling fixed point p is called the local
unstable set of p, and is denoted by W u

loc(p).

2. Similar stability results hold for cycles. If {p1, p2, · · · , pn} is an n-cycle for f then
the cycle is attracting (or sink) if |f ′(p1)f ′(p2) · · · f ′(pn)| < 1, and repelling (
or source) if |f ′(p1)f ′(p2) · · · f ′(pn)| > 1.

Theorem 5 shows that the local behaviour at a hyperbolic fixed point p is determined by
f ′(p). This is not the case for indifferent (non-hyperbolic) fixed points; to analyse these
we use Taylor series expansions involving higher derivatives. We will examine the cases
f ′(p) = 1 and f ′(p) = −1 separately. For simplicity we shall assume that f : R → R
and also that f can be differentiated as often as required at each x ∈ R.

Examples 4A

1. Let f : R → R with f(x) =
x3 + x

2
.

Establish the stability of the fixed points of f .

Solution:

f(x) = x ⇒ x3 + x

2
= x ⇒ x(x2 − 1)

2
= 0 ⇐⇒ x = 0, 1,−1.
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Fix(f) = {0, 1,−1}. Also f ′(x) =
3x2 + 1

2
.

|f ′(0)| = 1
2 < 1 so 0 is an attracting fixed point.

|f ′(±1)| = 2 > 1 so 1,−1 are repelling fixed points.
Show the cobweb diagram

|x| < 1 ⇒ fn(x) → 0

x > 1 ⇒ fn(x) → ∞ as n → ∞
x < −1 ⇒ fn(x) → −∞

so W s(0) = {x : |x| < 1} and Per(f) = Fix(f)

2. Let g : R → R with g = −(x3 + x)

2
. Establish the stability of the fixed and period

2 points of g.

Solution: Fixed points

g(x) = x ⇒ −(x3 + x)

2
= x ⇒ −x(x2 + 3)

2
= 0 ⇐⇒ x = 0

Fix(g) = {0}. As g′(x) = −3x2 − 1

2
, |g′(0)| = 1

2
< 1, hence 0 is an attractor.

Period 2 points:

g2(x) = x ⇒ g

(
−x3 + x

2

)
= −

(− (x3+x)
2 )3 + (− (x3+x)

2 )

2
= x

(x3 + x)3

16
+

(x3 + x)

4
− x = 0 ⇒ x9

16
+

3x7

16
+

3x5

16
+

5x3

16
− 3x

4
= 0

1

16
x(x2 + 3)(x− 1)(x+ 1)(x4 + x2 + 4) = 0

so Per2(g) = {0,−1, 1}.
From theorem 4, |(g2)′(1)| = |(g2)′(−1)| = |g′(1)g′(−1)| = |(−2)(−2)| = 4. Hence
the period 2 are repelling.

show cobweb diagram

Case (i):f ′(p) = 1

Theorem 6 Let f ∈ C2(R) and let p ∈ Fix(f) be such that f ′(p) = 1.
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1. If f ′′(p) > 0 then p is (weakly) attracting from the left, (weakly) repelling
from the right. In this case, we say that p is semistable from below.

2. If f ′′(p) < 0 then p is (weakly) attracting from the right, (weakly) repelling
from the left. In this case, we say that p is semistable from above.

Proof: Ommited

Theorem 7 Let f ∈ C3(R) and let p ∈ Fix(f) be such that f ′(p) = 1 and f ′′(p) = 0.

1. If f (3)(p) < 0 then p is a weakly attracting fixed point.

2. If f (3)(p) > 0 then p is a weakly repelling fixed point.

Proof: Ommited

Case (ii): f ′(p) = −1
To determine the stability of a fixed point p for which f ′(p) = −1, we apply the previous
results to the function g = f2 = f ◦ f . Routine calculations using the chain rule show
that g′(p) = 1, g′′(p) = 0, g(3)(p) = −2f (3)(p) − 3 (f ′′(p))2. This leads to the following
result.

Theorem 8 Let f ∈ C3(R) and let p ∈ Fix(f) be such that f ′(p) = −1.

1. If −2f (3)(p)− 3 (f ′′(p))2 < 0 then p is (weakly) attracting.

2. If −2f (3)(p)− 3 (f ′′(p))2 > 0 then p is (weakly) repelling.

Summary of Key Points so Far
Let f ∈ C3(R) and p ∈ Fix(f). Then

1. |f ′(p)| < 1: p is an attractor

2. |f ′(p)| > 1: p is a repeller

3. f ′(p) = 1:

• f ′′(p) > 0 ⇒ p is semistable from below

• f ′′(p) < 0 ⇒ p is semistable from above

4. f ′′(p) = 0:

(a) f ′′′(p) < 0: p is a weak attractor

(b) f ′′′(p) > 0: p is a weak repeller
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5. f ′(p) = −1:

• −2f ′′′(p)− 3 (f ′′(p))2 < 0 :p is a weak attractor

• −2f ′′′(p)− 3 (f ′′(p))2 > 0:p is a weak repeller

Example 4B
Let f : R → R with f(x) = x− x3. Establish the stability of the fixed point of f .

Solution: Fixed points

f(x) = x ⇒ x− x3 = x ⇒ x3 = 0 ⇐⇒ x = 0.

Fix(f) = {0}.

f ′(x) = 1− 3x2 and |f ′(0)| = 1 ⇒ 0 is non-hyperbolic.

f ′′(x) = −6x, and f ′′(0) = 0, and f ′′′(x) = −6 ⇒ 0 is a weak attractor.

4.2 The Logistic Map

We now return to the logistic map fµ(x) = µx(1 − x), x ∈ I, µ > 0. Recall what we
have established so far from example 3B and 3D:

• Fix(fµ) = {0, pµ} where pµ =
µ− 1

µ

• for µ > 3, fµ has a 2-cycle
{
q−µ , qu

+
µ

}
where q−µ , qu

+
µ =

µ+ 1±
√

µ2 − 2µ− 3

2µ

• when 0 < µ < 1, 0 is an attracting fixed point with fn
µ (x) → 0 as n → ∞ for

each x ∈ [0, 1]. (Note that |f ′
µ(0)| = µ and so the fact that 0 is an attracting fixed

point for 0 < µ < 1 can be deduced immediately from Theorem 5).

We will now move on to consider the case when µ ≥ 1. We begin by proving the
following theorem which shows that any interesting dynamical behaviour of the map fµ
must occur when x lies in the interval I = [0, 1].

Theorem 9 Let µ ≥ 1 and let x < 0 or x > 1. Then fn
µ (x) → −∞ as n → ∞.

Proof: Let xn = fn
µ (x) and suppose initially that x < 0. Then it follows that xn < 0

∀n = 0, 1, 2, · · ·. Moreover

xn+1 − xn = fµ(xn)− xn = xn(µ− 1− µxn) < 0 ( since xn < 0 and µ ≥ 1).
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and so the sequence {xn} is bounded below (by a standard result on monotonic sequences
)

xn = fn
µ (x) → l as n → ∞.

where l is finite and negative. Since fµ is continuous, we must have

l = lim
n→∞

fn+1
µ (x) = lim

n→∞
fµ

(
fn
µ (x)

)
= fµ(l),

and therefore the only possible values of l are 0 and
µ− 1

µ
. Clearly neither is possible.

Therefore {xn} cannot be bounded below and we conclude that xn → −∞ as n → ∞.
If x > 1, after one iteration we arrive at fµ(x) < 0 and it follows from the previous
analysis that

fn
µ (x) = fn−1

µ (fµ(x)) → −∞ for n ≥ 1 as n → ∞.

example 4C
Consider the logistic map fµ = µx(1 − x), µ > 0. Establish the stability of the fixed
and period 2 points when u ≥ 1.

Solution: f ′
µ(x) = µ− 2µx

Suppose that µ = 1: Fix(f1) = {0}. As |f ′
1(0)| = 1, 0 is non-hyperbolic.

f ′′
1 (x) = −2, so f ′′

1 (0) = −2 < 0 ⇒ 0 is stable from above.

Suppose µ ̸= 1: Fix(fµ) = {0, pµ}.

|f ′
µ(0)| = µ and |f ′

µ(pµ)| = µ− 2µ(
µ− 1

µ
) = 2− µ

So 0 is

{
attracting if 0 < µ < 1
repelling if µ > 1

So pµ is

{
attracting if |2− µ| < 1 ( i.e if 1 < µ < 3)
repelling if |2− µ| > 1 ( i.e if µ < 1 or µ > 3)

µ = 3.

Fix(f3(x)) =

{
0,

2

3

}

f ′
3

(
2

3

)
= −1, so

2

3
is nonhyperbolic

−2f ′′′
(
2

3

)
− 3

(
f ′′

(
2

3

))2

< 0 ⇒ 2

3
is a weak attractor.
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For µ > 3: 2-cycle with q±µ =
µ+ 1±

√
µ2 − 2µ− 3

2µ
.

We have to check

|(f2
µ)

′(q−µ )| = |(f2
µ)

′(q+µ )|
= |f ′

µ(q
−
µ )f

′
µ(q

+
µ )|

f ′
µ(q

−
µ ) = µ− (µ+ 1−

√
µ2 − 2µ− 3)

= −1 +
√
µ2 − 2µ− 3

f ′
µ(q

+
µ ) = µ− (µ+ 1 +

√
µ2 − 2µ− 3)

= −1−
√
µ2 − 2µ− 3

so |f ′
µ(q

−
µ )f

′
µ(q

+
µ )| = |1− (µ2 − 2µ− 3)2|

= |4 + 2µ− µ2|
= |5− (µ− 1)2|

|f ′
µ(q

−
µ )f

′
µ(q

+
µ )| < 1 ⇐⇒ −1 < 5− (µ− 1)2 < 1

⇐⇒ 4 < (µ− 1)2 < 6

⇐⇒ 2 < µ− 1 <
√
6

⇐⇒ 3 < µ < 1 +
√
6 ≈ 3.45

Hence
{
q+µ , q

−
µ

}
is an attracting 2-cycle for 3 < µ < 1 +

√
6 and a repelling 2-cycle for

µ > 1 +
√
6.

Theorem 10 Let 1 < µ < 3 and let fµ(x) = µx(1−x). Then Per(fµ) =
{
0, µ−1

µ

}
, and

W s(µ−1
µ ) = (0, 1) (which means that ω(x) =

{
µ−1
µ

}
∀x ∈ (0, 1))

4.3 Parameter Space Analysis: Bifurcation

We have seen how the dynamic behaviour of the logistic map changes as the parameter
µ changes. In this section, we consider any general one-parameter family of maps
{fµ : µ ∈ I}, where I is an interval in R. For each µ ∈ I, we assume that fµ : Iµ → Iµ
for some interval Iµ ⊆ R. If we define the function F (of two variables) by

F (µ, x) = fµ(x), µ ∈ I, x ∈ Iµ,

then we shall also assume that F is continuously differentiable with respect to both µ
and x. Our aims are to

1. Examine what happens to the dynamical properties of fµ as µ varies.

2. Identify the values of µ at which changes to the dynamical properties occur.
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Definition 11 Let J ⊆ I be an interval and let p : J → R be a continuous function
such that

fµ(p(µ)) = p(µ) ∀µ ∈ J.

(i.e p(µ) is a fixed point of fµ for each µ ∈ J) Then the function p is called a branch
of fixed point of the one-parameter family. Branches of periodic points of prime period
n can be defined in a similar manner.

Example 4D
Let fµ = µx(1 − x) for x ∈ R, µ > 0 i.e. Iµ = R, ∀µ ∈ I where I = (0,∞). Plot the
branches of fixed points and points of prime period 2.

Solution:

Definition 12 A value µ0 ∈ I is a bifurcation value (or bifurcation point) of the
one-parameter family {fµ : µ ∈ I} if the following conditions hold:

1. there are two different functions pi : Ji → R(i = 1, 2) whose graphs are branches
of fixed points or periodic points of the family, and p1(µ0) = p2(µ0);

2. J1 ∩ J2 ̸= {µ0} and p1(µ) ̸= p2(µ) ∀µ ∈ J1 ∩ J2 : µ ̸= µ0.

Bifurcations can be represented graphically on a bifurcation diagram in which the lo-
cation of fixed points (or periodic points) are plotted for each value of µ. Stable branches
of fixed points (or periodic points) are usually represented by solid lines, with unstable
branches represented by dashed lines. Below are some common types of bifurcation.

1. Saddle node (or tangent or fold) bifurcation. In this case, there are two
branches p1 and p2 of fixed point (or periodic points) which are defined on a
common interval J which begins (or ends) at the bifurcation value µ0. In addition,

p1(µ0) = p2(µ0), p1(µ) ̸= p2(µ) for µ ∈ J, µ ̸= µ0,

and no other branch p has the property p(µ0) = p1(µ0).

Show saddle node bifurcation diagram here

The diagram shows a typical fold bifurcation. In the vicinity of µ0, the fixed points
p1(µ) and p2(µ) lie on a parabolic shaped curve with ‘vertex’ occurring at (µ0, p0)
where p0 = p1(µ0) = p2(µ0).

2. Transcritical bifurcation. Two branches p1 and p2 of fixed points (or periodic
points) intersects at µ = µ0 and neither ‘double back’ at µ0.

Show transcritical bifurcation diagram here
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3. Pitchfork bifurcation. This is a combination of saddle node and transcritical
bifurcations. In the vicinity of µ = µ0, the branches of fixed points p1 and p2 lie
on a parabolic shaped curve with vertex (µ0, p0), with another fixed point branch,
p3 also passing through this vertex. Pitchfork bifurcation for periodic points of
the same prime period is defined in a similar manner.

Show pitchfork bifurcation diagram here

4. Period doubling bifurcation. Let f2
µ (the second iterate of fµ) undergo pitch-

fork bifurcation at µ = µ0 such that p1(µ) and p2(µ) form a 2-cycle for fµ but
p3(µ) is a fixed point of fµ. Then we say that period doubling bifurcation has
occurred at µ0. Typically this involves

(a) a change from an attracting fixed point to a repelling fixed point;

(b) the birth of an attracting 2-cycle.

Period doubling bifurcation of period points of prime period n is also possible
since the nth iterate fn

µ can display the type of behaviour described above for fµ.
In fact, we shall see in the next section that one way in which a one-parameter
family of maps ends up behaving in a ‘chaotic’ manner is by means of a cascade
of period doubling bifurcations.

show period doubling bifurcation diagram here

When describing bifurcation, the word subcritical indicates that branches disappear
as µ increases through bifurcation point, and the word supercritical indicates that
branches emerges as µ increases through bifurcation point.

Example 4E
Draw a bifurcation diagram representing the dynamic behaviour of the one-parameter
family of maps fµ : R → R where

F (µ, x) = fµ(x) = 1.8x− 0.8x2 − µ

solution:
Fixed points satisfy

fµ(x) = x
9

5
x− 4

5
x2 − µ = x

4

5
x2 − 9

5
x+ µ+ x = 0

4

5
x2 − 4

5
x+ µ = 0

x =
1±

√
1− 5µ

2
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Hence the fixed points are p1,2(µ) =
1±

√
1− 5µ

2
.

Note that f ′
µ(x) =

9

5
− 8x

5
and f ′′

µ(x) = −8

5
.

• µ =
1

5

There is only one fixed point x =
1

2
.

f ′
0.2

(
1

2

)
= 1, so x =

1

2
is a non-hyperbolic fixed point.

However, f ′′
0.2(

1
2) = −8

5 , so the fixed point is semi-stable from above.

• µ >
1

5
There are no fixed points.

• µ <
1

5
There are two fixed points p1(µ) and p2(µ).

∣∣f ′
µ(p1(µ))

∣∣ =

∣∣∣∣1−
4
√
1− 5µ

5

∣∣∣∣
∣∣∣∣1−

4
√
1− 5µ

5

∣∣∣∣< 1 ⇐⇒ −2 < −4
√
1− 5µ

5
< 0

⇐⇒ 0 <
√

1− 5µ <
5

2

⇐⇒ 0 < 1− 5µ <
25

4

⇐⇒ −21

4
< 5µ < 1

⇐⇒ −21

20
< µ <

1

5
.

Thus p1(µ) is an attracting fixed point for −21

20
< µ <

1

5
, and a repelling fixed

point for µ < −21

20
.

f ′
µ(p2(µ)) =

9

5
− 4(1−

√
1− 5µ)

5
= 1 +

4
√
1− 5µ

5
> 1.

Hence for µ <
1

5
, p2(µ) is a repelling fixed point.

• µ = −21

20
= −1.05

For the fixed point at p1(−1.05) = 1.75, we have f ′
−1.05(1.75) = −1. So x = 1.75 is

a non-hyperbolic fixed point and −2f ′′′(1.75) − 3(f ′′(1.75))2 < 0, hence x = 1.75
is a weak attractor.
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Period 2 points satisfy

f2
µ(x) = x

9

5

(
9

5
x− 4

5
x2 − µ

)
− 4

5

(
9

5
x− 4

5
x2 − µ

)2

− µ = x

f2
µ(x)− x = 0

− 2

125

(
4x2 − 4x+ 5µ

) (
8x2 − 28x+ 35 + 10µ

)
= 0

(
4x2 − 4x+ 5µ

)
is a factor from period 1, where we obtain p1(µ) and p2(µ). To obtain

period 2-cycle, we need to use the second factor of the above equation.

8x2 − 28x+ 35 + 10µ = 0

x =
7±

√
−21− 20µ

4

p3,4(µ) =
7±

√
−21− 20µ

4

fµ has a 2-cycle p3(µ) and p4(µ) for −21− 20µ > 0 ⇒ µ < −21

20
.

∣∣f ′
µ(p3(µ))f

′
µ(p4(µ)

∣∣ = |4.36 + 3.2µ| < 1

⇒ −1.675 < µ < −1.05

fµ has an attracting 2-cycle for −1.675 < µ < −1.05. Combine all the information to
produce a bifurcation diagram.
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Theorem 11 (The Implicit Function Theorem.) Suppose that G : R2 → R is con-
tinuously differentiable with respect to each variable, and let (x0, y0) be such that

G(x0, y0) = 0 and
∂G

∂y
(x0, y0) ̸= 0.

Then there exist open interval U (about x0) and V (about y0) and a continuously dif-
ferentiable function f : U → V such that

1. y0 = f(x0)

2. G(x, f(x)) = 0 ∀x ∈ U

3. G(x, y) ̸= 0 for (x, y) ∈ U × V unless y = f(x)

Moreover

f ′(x) = −Gx(x, f(x))

Gy(x, f(x))
∀x ∈ U.

Proof: omitted


