Examples 3C

1. Linear map. Let $f_{a}: \mathbb{R} \rightarrow \mathbb{R}, f_{a}(x)=a x, a \neq 0$, with inverse $f_{a}^{-1}(x)=\frac{x}{a}$.

Analyse the behaviour of the associated difference equation $x_{n+1}=a x_{n}$.

Solution:

Fixed points: $f_{a}(x)=x \Rightarrow a x=x$ so

$$
\operatorname{Per}_{1}\left(f_{a}\right)=\operatorname{Fix}\left(f_{a}\right)=\left\{\begin{array}{ccc}
\{0\} & \text { if } & a \neq 1 \\
\mathbb{R} & \text { if } & a=1
\end{array}\right.
$$

We now consider the asymptotic behaviour of

$$
f_{a}^{n}(x)=a^{n} x, \quad f_{a}^{-n}=\frac{x}{a^{n}}, \quad \forall n \in \mathbb{Z}
$$

for different values of a.
(a) $|a|<1$: We have
i. $f_{a}^{n}(x)=a^{n} x \rightarrow 0$ as $n \rightarrow \infty \forall x \in \mathbb{R}$
ii. $\left|f_{a}^{-n}(x)\right| \rightarrow \infty$ as $n \rightarrow \infty \forall x \neq 0$
so 0 is an attracting fixed point with $W^{s}(0)=\mathbb{R}$ and $W^{u}(0)=\{0\}$. Hence $\omega(x)=\{0\} \forall x \in \mathbb{R}$.
(b) $|a|>1$: We have
i. $\left|f_{a}^{n}(x)\right| \rightarrow \infty \forall x \neq 0$
ii. $f_{a}^{-n}(x) \rightarrow 0 \forall x \in \mathbb{R}$
so 0 is a repelling fixed point with $W^{s}(0)=\{0\}$ and $W^{u}(0)=\mathbb{R}$.
(c) $a=1: f_{1}(x)=x$ so $\operatorname{Fix}\left(f_{1}\right)=\mathbb{R}$ with $\gamma_{+}(x)=x$ and $\omega(x)=\{x\} \forall x \in \mathbb{R}$.
(d) $a=-1: f_{-1}(x)=-x \Rightarrow f_{-1}^{2}(x)=x$ so $\operatorname{Per}_{2}\left(f_{-1}\right)=\mathbb{R}$ with $\gamma_{+}(x)=\{x,-x\}$ and $\omega(x)=\{x,-x\} \forall x \neq 0$.
2. Find the ω-limit sets of the fixed and period 2 points of the logistic map $f_{\mu}(x)=\mu x(1-x), \mu>0$ as found in example 3 B .

Recall from example 3B that

$$
\operatorname{Per}_{1}\left(f_{\mu}\right)=\left\{\begin{array}{cc}
\left\{0, \frac{\mu-1}{\mu}\right\} & \mu \neq 1 \\
\{0\} & \mu=1
\end{array} \quad \operatorname{Per}_{2}\left(f_{\mu}\right)=\left\{0, \frac{\mu-1}{\mu}, q_{\mu}^{+}, q_{\mu}^{-}\right\}\right.
$$

where $q_{\mu}^{ \pm}=\frac{\mu+1 \pm \sqrt{\mu^{2}-2 \mu-3}}{2 \mu}$. We therefore have

$$
\omega(0)=\{0\}, \quad \omega\left(\frac{\mu-1}{\mu}\right)=\left\{\frac{\mu-1}{\mu}\right\} \quad \forall \mu>0
$$

and

$$
\omega\left(q_{\mu}^{+}\right)=\omega\left(q_{\mu}^{-}\right)=\left\{q_{\mu}^{+}, q_{\mu}^{-}\right\} \quad \mu>3
$$

Note that $\omega(1)=\{0\}$
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$. Recall that

$$
\operatorname{Per}(f)=\operatorname{Fix}(f)=\{0,1,-1\} .
$$

Find the stable and unstable sets of these fixed points.

Solution:

Using analysis we have

$$
f^{n}(x)=x^{3^{n}} \rightarrow\left\{\begin{array}{ccc}
0 & \text { if } & |x|<1 \\
\infty & \text { if } & x>1 \\
-\infty & \text { if } & x<-1 .
\end{array} \quad f^{-n}(x)=x^{\frac{1}{3^{n}}} \rightarrow\left\{\begin{array}{ccc}
1 & \text { if } & x>0 \\
-1 & \text { if } & x<0
\end{array}\right.\right.
$$

(note: $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$ if $x>0$.)

$$
\begin{aligned}
W^{s}(0) & =\{x:-1<x<1\} ; & W^{u}(0)=\{0\} \\
W^{s}(1) & =\{1\} ; & W^{u}(1)=\{x: x>0\} \\
W^{s}(-1) & =\{-1\} ; & W^{u}(-1)=\{x: x<0\}
\end{aligned}
$$

Note: We also have $\omega(x)=\{0\} \forall x \in(-1,1)$, and so $S=\{0\}$ is the only attractor for f.

