Examples 3C

1. Linear map. Let $f_a : \mathbb{R} \to \mathbb{R}, f_a(x) = ax, a \neq 0$, with inverse $f_a^{-1}(x) = \frac{x}{a}$. Analyse the behaviour of the associated difference equation $x_{n+1} = ax_n$. Solution:

Fixed points: $f_a(x) = x \Rightarrow ax = x$ so

$$\operatorname{Per}_1(f_a) = \operatorname{Fix}(f_a) = \begin{cases} \{0\} & if \quad a \neq 1 \\ \mathbb{R} & if \quad a = 1 \end{cases}$$

We now consider the asymptotic behaviour of

$$f_a^n(x) = a^n x, \qquad f_a^{-n} = \frac{x}{a^n}, \quad \forall n \in \mathbb{Z}$$

for different values of a.

- (a) |a| < 1: We have
 - i. $f_a^n(x) = a^n x \to 0 \text{ as } n \to \infty \ \forall x \in \mathbb{R}$ ii. $|f_a^{-n}(x)| \to \infty \text{ as } n \to \infty \ \forall x \neq 0$

so 0 is an attracting fixed point with $W^s(0) = \mathbb{R}$ and $W^u(0) = \{0\}$. Hence $\omega(x) = \{0\} \ \forall x \in \mathbb{R}$.

- (b) |a| > 1: We have
 - i. $|f_a^n(x)| \to \infty \ \forall x \neq 0$
 - ii. $f_a^{-n}(x) \to 0 \ \forall x \in \mathbb{R}$

so 0 is a repelling fixed point with $W^s(0) = \{0\}$ and $W^u(0) = \mathbb{R}$.

- (c) a = 1: $f_1(x) = x$ so $Fix(f_1) = \mathbb{R}$ with $\gamma_+(x) = x$ and $\omega(x) = \{x\} \ \forall x \in \mathbb{R}$.
- (d) $a = -1: f_{-1}(x) = -x \Rightarrow f_{-1}^2(x) = x$ so $\operatorname{Per}_2(f_{-1}) = \mathbb{R}$ with $\gamma_+(x) = \{x, -x\}$ and $\omega(x) = \{x, -x\} \ \forall x \neq 0.$
- 2. Find the ω -limit sets of the fixed and period 2 points of the logistic map $f_{\mu}(x) = \mu x(1-x), \ \mu > 0$ as found in example 3B.

Recall from example 3B that

$$\operatorname{Per}_{1}(f_{\mu}) = \begin{cases} \left\{ 0, \frac{\mu-1}{\mu} \right\} & \mu \neq 1 \\ \left\{ 0 \right\} & \mu = 1 \end{cases} \qquad \operatorname{Per}_{2}(f_{\mu}) = \left\{ 0, \frac{\mu-1}{\mu}, q_{\mu}^{+}, q_{\mu}^{-} \right\}$$

where $q_{\mu}^{\pm} = \frac{\mu + 1 \pm \sqrt{\mu^2 - 2\mu - 3}}{2\mu}$. We therefore have

$$\omega(0) = \{0\}, \qquad \omega\left(\frac{\mu-1}{\mu}\right) = \left\{\frac{\mu-1}{\mu}\right\} \qquad \forall \mu > 0$$

and

$$\omega(q_{\mu}^{+}) = \omega(q_{\mu}^{-}) = \{q_{\mu}^{+}, q_{\mu}^{-}\} \qquad \mu > 3.$$

Note that $\omega(1) = \{0\}$

3. Let $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3$. Recall that

$$\operatorname{Per}(f) = \operatorname{Fix}(f) = \{0, 1, -1\}.$$

Find the stable and unstable sets of these fixed points.

Solution:

Using analysis we have

$$f^{n}(x) = x^{3^{n}} \to \begin{cases} 0 & \text{if } |x| < 1\\ \infty & \text{if } x > 1\\ -\infty & \text{if } x < -1. \end{cases} \qquad f^{-n}(x) = x^{\frac{1}{3^{n}}} \to \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0. \end{cases}$$

(note: $x^{1/n} \to 1$ as $n \to \infty$ if x > 0.)

$$\begin{array}{ll} W^s(0) &= \left\{ x: -1 < x < 1 \right\}; & W^u(0) = \left\{ 0 \right\} \\ W^s(1) &= \left\{ 1 \right\}; & W^u(1) = \left\{ x: x > 0 \right\} \\ W^s(-1) &= \left\{ -1 \right\}; & W^u(-1) = \left\{ x: x < 0 \right\} \end{array}$$

Note: We also have $\omega(x) = \{0\} \ \forall x \in (-1, 1)$, and so $S = \{0\}$ is the only attractor for f.