CHAPTER 1

POLAR COORDINATES

- 1.1 Parametric Equations
- 1.2 Polar coordinates system
- 1.3 Relationship between Cartesian and Polar Coordinates
- 1.4 Forming polar equations from Cartesian equations and vice-versa
- 1.5 Sketching polar equations
 - Method 1: Table
 - Method 2: Test of symmetries
- 1.6 Intersection of curves in Polar Coordinates

1.1 Parametric Equations

1.1.1 Definition:

Equations x = f(t), y = g(t) that express x and y in t is known as **parametric equations**, and t is called the **parameter**.

How the parameter may be eliminated from the parametric equations to obtain the Cartesian equations?

- no specific method
- use algebraic manipulation

Example: Form Cartesian equations by eliminating parameter *t* in the following equations:

(a)
$$x = 2t$$
, $y = 4t^2 - 1$
(b) $x = 4\sin t$, $y = 2\cos^2 t$
(c) $x = e^t$, $y = e^{-t}$
(d) $x = t^3$, $y = 3\ln t$

1.1.2 Curve Sketching of parametric equations

Example:

Sketch the graph of the following equations

(a)
$$x = 2t$$
, $y = 4t^2 - 1$
(b) $x = 3t - 5$, $y = 2t + 5$

1.2 Polar Coordinates System

Definition:

The polar coordinates of point P is written as an ordered pair (r,θ) , that is $P(r,\theta)$ where

r - distance from origin to P

 θ - angle from polar axis to the line OP

Note:

- (i) θ is positive in anticlockwise direction, and it is negative in clockwise direction.
- (ii) Polar coordinate of a point is not unique.
- (iii) A point $(-r, \theta)$ is in the opposite direction of point (r, θ) .

Example 1: Plot the following set of points in the same diagram:

(a)
$$(3,225^{\circ})$$
, $(1,225^{\circ})$, $(-3,225^{\circ})$
(b) $(2,\frac{\pi}{3})$, $(2,-\frac{\pi}{3})$, $(-2,\frac{\pi}{3})$

For every point $P(r,\theta)$ in $0 \le \theta \le 2\pi$, there exist 3 more coordinates that represent the point *P*.

Example:

Find all possible polar coordinates of the points whose polar coordinates are given as the following: (a) $P(1,45^{\circ})$ (b) $Q(2,-60^{\circ})$ (c) $R(-1,225^{\circ})$ **1.3 Relationship between Cartesian and Polar Coordinates**

Example 3: Find the Cartesian coordinates of the points whose polar coordinates are given as

(a)
$$\left(1, \frac{7\pi}{4}\right)$$

(b)
$$\left(-4, \frac{2\pi}{3}\right)$$

$$(c)(2,-30^{\circ})$$

Example 4: Find all polar coordinates of the points whose rectangular coordinates are given as

(a)
$$(11,5)$$
 (b) $(0,2)$ (c) $(-4,-4)$

1.4 Forming polar equations from Cartesian equations and vice-versa.

To change the equation in Cartesian coordinates to polar coordinates, and conversely, use equation

$$x = r \cos \theta$$
 $y = r \sin \theta$ $r = \sqrt{x^2 + y^2}$

Example 5: Express the following rectangular equations in polar equations.

(a) $y = x^2$ (b) $x^2 + y^2 = 16$ (c) xy = 1

Example 6: Express the following polar equations in rectangular equations and sketch the graph.

(a)
$$r = 2\sin\theta$$
 (b) $r = \frac{3}{4\cos\theta + 5\sin\theta}$

(c) $r = 4\cos\theta + 4\sin\theta$ (d) $r = \tan\theta\sec\theta$

e)
$$r^2 = \frac{2}{3\cos^2 \theta - 1}$$

1.5 Graph Sketching of Polar Equations

There are two methods to sketch a graph of $r = f(\theta)$. (1) Form a table for r and θ . $(0 \le \theta \le 2\pi)$. From the table, plot the (r, θ) points.

(2) Symmetry test of the polar equation.
The polar equations is symmetrical about:
(a) *x*-axis if (*r*, -θ) = *f*(θ) or (-*r*, π - θ) = *f*(θ).

- consider θ in range [0, 180⁰] only.

(b) y-axis if
$$(r, \pi - \theta) = f(\theta)$$
 or $(-r, -\theta) = f(\theta)$.

- consider θ in range [0, 90⁰] **and** [270⁰, 360⁰]

(c) origin if $(r, \pi + \theta) = f(\theta)$ or $(-r, \theta) = f(\theta)$. - consider θ in range [0, 180⁰] **or** [180⁰, 360⁰]

* if symmetry at all, consider θ in range [0, 90⁰] only.

Example 7: Sketch the graph of $r = 2\sin\theta$

Solution: (Method 1)

Here is the complete table

θ	0	30	60	90	120	150	180	210
$r=2{ m sin} heta$	0	1.0	1.732	2	1.732	1	0	-1.0

θ	240	270	300	330	360
$r = 2\sin\theta$	-1.732	-2	-1.732	-1	0

Method 2

Symmetrical test for $f(\theta) = 2\sin\theta$

Symmetry	Symmetrical test
About x-axis	
About y-axis	
About origin	

Since *r* symmetry at *y*-axis, consider θ in range [0, 90⁰] and [270⁰, 360⁰]

θ	0	30	60	90	270	300	330	360
$r = 2\sin\theta$	0	1.0	1.732	2	-2	-1.732	-1	0

Example 8: Sketch the graph of $r = \frac{3}{2} - \cos \theta$

Symmetry	Symmetrical test
About x-axis	
About y-axis	
About origin	

Since *r* symmetry at *x*-axis, consider θ in range [0, 180⁰] only.

θ	0	30	60	90	120	150	180
$r = \frac{3}{2} - \cos\theta$							

Example 9 :	Sketch the graph of $r =$	$2\sin^2\theta$
<i>P</i> > .	Surger 61 (

Symmetry	Symmetrical test
About x-axis	
About y-axis	
About origin	

Since *r* symmetry at _____, consider θ in range _____ only.

θ				
$r = 2\sin^2\theta$				

20

<u>1.6 Intersection Of Curves In Polar Coordinates.</u>

Steps:

1. Solve simultaneous equations between 2 curves and determine the intersection points.

-if one of the curves is a line (i.e. $\theta = k$), we need to find intersection point for $\theta = k - \pi$.

- 2. Check whether the curves intersect at the origin.
 - Test for r = 0. If θ exist, it means the 2 curves intersect at the origin.

Example 10:

Find the points of intersection of the circle $r = 2\cos\theta$ and $r = 2\sin\theta$ for $0 \le \theta \le \pi$

Example 11:

Find the points of intersection of the curves
$$r = \frac{3}{2} - \cos\theta$$
 and $\theta = \frac{2\pi}{3}$.

Example 12:

A polar equation is given as $r = 2 - 5\sin\theta$.

- a) Show that the curve is symmetrical about the y-axis and passes through the origin.
- b) Make a suitable graph for $-90^{\circ} \le \theta \le 90^{\circ}$. Use the table and the information in part a) to make a full sketch of the graph.

c) Find the intersection points of the graph and the straight line $\theta = \frac{11\pi}{12}$