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2.1 Review 

2.1.1  Graphs of  Trigonometric Functions 

 

 

 

 

 

 

 

 

 
              Graph of y = sin x 

 
                          

 
 

• Period: 2π 
• Domain: All real numbers 
• Range: [–1, 1] 
• Symmetric with respect to the origin 
 

 

 
Graph of y = cos x 

 

  
 
                      • Period: 2π 

• Domain: All real numbers 
• Range: [–1, 1] 
• Symmetric with respect to the y axis 
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              Graph of y = tan x 

 

 
 

 
Graph of y = cot x 

 
 
 
                      
 
 
 

• Period: π 
• Domain: All real numbers except 

 is an integer 
• Range: All real numbers 
• Symmetric with respect to origin 
 

• Period: π 
• Domain: All real numbers except  is  

an integer 
• Range: All real numbers 
• Symmetric with respect to origin 
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2.1.2 Graphs of  Exponential Functions 

 

 

 

 

 

 

 

 

• Domain:  (–∞, ∞), Range:  (0, ∞) 
• Natural Exponential Function ( ) xf x e=    

 

 
              Graph of   

 

 

 
        Graph of   
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2.1.3 Trigonometric Identities
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2.1.4  Graphs of  f  and  f -1 

Inverse Functions 

The inverse of a function f is denoted by f
 -1 . The inverse reverses the original function. 

Hence, if  f(a) = b then f
  -1

(b) = a  
 
Note: f

 -1
(x) does not mean 1/f(x). 

 

 

 

 

 

 

 

 

 

 

One to one Functions 

  
If a function is to have an inverse which is also a function then it must be one to one. 
This means that a horizontal line will never cut the graph more than once. i.e we cannot have 
f(a) = f(b) if a ≠ b, 
Two different inputs (x values) are not allowed to give the same output (y value). 
 
For instance f(-2) = f(2) = 4 
y = f(x) = x

2  
with domain x∈ℜ is not one to one.  
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Drawing the graph of the Inverse  
The graph of y = f

 -1
(x)  is the reflection in the line y = x of the graph of y = f(x). 

 
Example: Find the inverse of the function y = f(x) = (x-2)

2
 + 3 , x ≥ 2  

Sketch the graphs of y = f(x) and y = 1f − (x) on the same axes showing the relationship between 
them. 
  
Domain:  
This is the function we considered earlier except that its domain has been restricted to x ≥ 2 in 
order to make it one-to-one. We know that the Range of f is y ≥ 3 and so the domain of  1f −   will 
be x ≥ 3. 
 
Rule: 
Swap x and y to get x = (y-2)

2  
+ 3.  Now make y the main subject: 

  x – 3  = (y-2)
2  

 
√(x –3) = y-2 
y = 2 + √(x –3) 

  
Hence, the final answer is: 1f −  (x) = 2 + √(x –3) , x ≥ 3 
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Graphs 
Reflect in y = x to get the graph of the inverse function. 
 
 

 
 

 

 

 

 

Note:  
Remember with inverse functions everything swaps over. 
Input and output (x and y) swap over 
Domain and Range swap over 
Reflecting in y = x swaps over the coordinates of a point 
so (a,b) on one graph becomes (b,a) on the other. 
 

Note: we could also have 
 -√(x –3) = y-2 
and y = 2 - √(x –3) 
But this would not fit our function as y must be greater 
than 2 (see graph) 
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2.2.1 Definition of Hyperbolic Functions 

! Hyperbolic Sine, pronounced “shine”. 

  sinh x = 
2

xx ee −−

 

! Hyperbolic Cosine, pronounced “cosh”. 

  cosh x = 
2

xx ee −+

 

! Hyperbolic Tangent, pronounced 

“tanh”. 

tanh x = 
x
x

cosh
sinh

= 
1

1
2

2
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x
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! Hyperbolic Secant, pronounced “shek”. 

   sech x = 
xcosh

1
xx ee −+

=
2

 

! Hyperbolic Cosecant, pronounced 

“coshek”. 

  cosech x = 
xsinh

1
xx ee −−

=
2

 

! Hyperbolic Cotangent, pronounced 

“coth”. 

  coth x = 
x
x

sinh
cosh

xx

xx

ee
ee
−

−

−

+
=  
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 (ii) Graph of cosh x 

 

2.2.2 Graphs of Hyperbolic Functions 

Since the hyperbolic functions depend on the values of xe  and xe− , its graphs is a 
combination of the exponential graphs. 
 

(i) Graph of sinh x 

 
 

 

 

From the graph, we see 
(i) sinh 0 = 0. 
(ii) The domain is all real numbers 
(iii) The curve is symmetrical about the 

origin, i.e.     
sinh (−x) = −sinh x 

(iv) It is an increasing one-to-one function. 
 

(i) cosh 0 = 1 
(ii) The domain is all real numbers. 
(iii) The value of cosh x is never less than 1. 
(iv) The curve is symmetrical about the y-axis, i.e. 

cosh (−x) = cosh x 
(v) For any given value of cosh x, there are two 

values of x. 
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(iii) Graph of tanh x 

 

 
We see 
 

(i) tanh 0 = 0 
(ii) tanh x always lies between y = −1 and y = 1. 
(iii) tanh (−x) = −tanh x 
(iv) It has horizontal asymptotes 1±=y . 
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2.2.3 Hyperbolic Identities 

For every identity obeyed by trigonometric functions, there is a corresponding identity obeyed 

by hyperbolic functions. 

1.    1sinhcosh 22 =− xx  
2. xhx 22 sectanh1 =−  
3. xechx 22 cos1coth =−  
4. yxyxyx sinhcoshcoshsinh)sinh( ±=±  
5.  yxyxyx sinhsinhcoshcosh)cosh( ±=±  

6. 
yx
yxyx

tanhtanh1
tanhtanh)tanh(

±
±

=±  

7.  xxx coshsinh22sinh =  

8. xxx 22 sinhcosh2cosh +=   

     
1sinh2

1cosh2
2

2

+=

−=

x

x
 

9. 
x
xx 2tanh1

tanh22tanh
+

=  
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Some of the hyperbolic identities follow exactly the trig. identities; others have a difference in 
sign. 
 
         Trig. Identities           Hyperbolic Identities 

 

θ
θ
cosh
1sech =  

θ
θ
sinh
1cosech =  

θ
θ
tanh
1coth =  

 

1sinhcosh 22 ≡− θθ  
θθ 22 sechtanh1 ≡−  
θθ 22 cosech1coth ≡−  

 

AAA coshsinh22sinh ≡  

1cosh2

sinh21

sinhcosh2cosh

2

2

22

−≡

+≡

+≡

A
A

AAA
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Examples 2.1 

1. Sketch the graph of the following functions. State the domain and range. 
a) y = sinh x + 2 
b) y = 2tanh 3x 

2. By using definition of hyperbolic functions, 

a) Evaluate sinh(-4) and cosh(ln 2) to four decimal places. 
b) Show that 2!cosh!! − 1 = cosh2! 
c) Show that cosh!! − !sinh!! = 1 

3. By using identities of hyperbolic functions, show that 

1− tanh!!
1+ tanh!! = sech 2! 

4. Solve the following for x, giving your answer in 4dcp. 
a) 2cosh x – sinh x = 2 
b) cosh 2x - sinh x = 1 

 


