CHAPTER 2

FURTHER TRANSCENDENTAL FUNCTIONS

2.1 Review

- 2.1.1 Graphs of Trigonometric Functions
- 2.1.2 Graphs of Exponential Functions
- 2.1.3 Trigonometric Identities
- 2.1.4 Graphs of f and f^{-1}
- 2.2 Hyperbolic Functions
 - 2.2.1 Definition of Hyperbolic Functions
 - 2.2.2 Graphs of Hyperbolic Functions
 - 2.2.3 Hyperbolic Identities
- 2.3 Inverse Functions
 - 2.3.1 Inverse Trigonometric Functions
 - 2.3.2 Inverse Trigonometric Identities
 - 2.3.3 Inverse Hyperbolic Functions
 - 2.3.4 Log Form of the Inverse Hyperbolic Functions

2.1 Review

2.1.1 Graphs of Trigonometric Functions

- Period: π
- Domain: All real numbers except $k\pi, k$ is an integer
- Range: All real numbers
- Symmetric with respect to origin

2.1.2 Graphs of Exponential Functions

- Domain: $(-\infty, \infty)$, Range: $(0, \infty)$
- Natural Exponential Function $f(x) = e^x$

2.1.3 Trigonometric Identities

TRIGONOMETRIC IDENTITIES

<u>The six trigonometric functions</u> : $siz 0 = {}^{\text{opp}} = {}^{y}$ $siz 0 = {}^{\text{hyp}} = {}^{r} = {}^{1}$	<u>Sum and</u> sin acos
$\sin \theta = \frac{\operatorname{opp}}{\operatorname{hyp}} = \frac{y}{r}$ $\operatorname{csc} \theta = \frac{\operatorname{hyp}}{\operatorname{opp}} = \frac{r}{y} = \frac{1}{\sin \theta}$	cos <i>a</i> sin
$\cos \theta = \frac{\mathrm{adj}}{\mathrm{hyp}} = \frac{x}{r}$ $\operatorname{sec} \theta = \frac{\mathrm{hyp}}{\mathrm{adj}} = \frac{r}{x} = \frac{1}{\cos \theta}$	cos a cos
• 1 5	sin <i>a</i> sin
$ \tan \theta = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\operatorname{adj}}{\operatorname{opp}} = \frac{x}{y} = \frac{1}{\tan \theta} $	$\sin a +$
Sum or difference of two angles:	sin <i>a</i> –
$sin(a \pm b) = sin a cos b \pm cos a sin b$	$\cos a +$
$\cos(a\pm b) = \cos a \cos b \mp \sin a \sin b$ $\tan a \pm \tan b$	$\cos a -$
$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$ Double angle formulas: $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$	Law of cos where
	side <i>a</i> .
$\sin 2\theta = 2\sin\theta\cos\theta \qquad \qquad \cos 2\theta = 2\cos^2\theta - 1$	<u>Radian me</u>
$\cos 2\theta = 1 - 2\sin^2 \theta \qquad \qquad \cos 2\theta = \cos^2 \theta - \sin^2 \theta$	
<u>Pythagorean Identities</u> : $\sin^2 \theta + \cos^2 \theta = 1$	
$\tan^2 \theta + 1 = \sec^2 \theta$ $\cot^2 \theta + 1 = \csc^2 \theta$ Half angle formulas:	$\frac{\text{Reduction}}{\sin(-\theta)}$
$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \qquad \qquad \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$	$\sin(\theta)$
	$tan(-\theta)$
$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \qquad \qquad \cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$	$\mp \sin x$
$\tan\frac{\theta}{2} = \pm \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \frac{\sin\theta}{1+\cos\theta} = \frac{1-\cos\theta}{\sin\theta}$	Complex I
$\tan \frac{1}{2} = \pm \sqrt{\frac{1+\cos\theta}{1+\cos\theta}} = \frac{1+\cos\theta}{\sin\theta} = \frac{1+\cos\theta}{\sin\theta}$	$\cos \theta =$

Sum and product formulas:

 $\sin a \cos b = \frac{1}{2} [\sin (a + b) + \sin (a - b)]$ $\cos a \sin b = \frac{1}{2} [\sin (a + b) - \sin (a - b)]$ $\cos a \cos b = \frac{1}{2} [\cos (a + b) + \cos (a - b)]$ $\sin a \sin b = \frac{1}{2} [\cos (a - b) - \cos (a + b)]$ $\sin a + \sin b = 2 \sin \left(\frac{a + b}{2}\right) \cos \left(\frac{a - b}{2}\right)$ $\sin a - \sin b = 2 \cos \left(\frac{a + b}{2}\right) \sin \left(\frac{a - b}{2}\right)$ $\cos a + \cos b = 2 \cos \left(\frac{a + b}{2}\right) \cos \left(\frac{a - b}{2}\right)$ $\cos a - \cos b = -2 \sin \left(\frac{a + b}{2}\right) \sin \left(\frac{a - b}{2}\right)$ and the angle of a scalene triangle opposite

dian measure: 8.1 p420 $1^{\circ} = \frac{\pi}{180}$ radians 1 radian $= \frac{180^{\circ}}{\pi}$

```
Reduction formulas:sin(-\theta) = -sin\thetacos(-\theta) = cos\thetasin(\theta) = -sin(\theta - \pi)cos(\theta) = -cos(\theta - \pi)tan(-\theta) = -tan\thetatan(\theta) = tan(\theta - \pi)\mp sin x = cos(x \pm \frac{\pi}{2})\pm cos x = sin(x \pm \frac{\pi}{2})Complex Numbers:e^{\pm j\theta} = cos \theta \pm j sin \thetacos \theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta})sin \theta = \frac{1}{j^2}(e^{j\theta} - e^{-j\theta})
```

TRIGONOMETRIC VALUES FOR COMMON ANGLES

Degrees	Radians	sin θ	cos θ	tan θ	cot θ	sec θ	csc θ
0°	0	0	1	0	Undefined	1	Undefined
30°	π/6	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	$\sqrt{3}$	$2\sqrt{3}/3$	2
45°	π/4	$\sqrt{2}/2$	$\sqrt{2}/2$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	π/3	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$
90°	π/2	1	0	Undefined	0	Undefined	1
120°	2π/3	$\sqrt{3}/2$	-1/2	- \sqrt{3}	- √3/3	-2	$2\sqrt{3}/3$
135°	3π/4	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	-1	- \sqrt{2}	$\sqrt{2}$
150°	5π/6	1/2	$-\sqrt{3}/2$	- √3/3	- \sqrt{3}	-2/3/3	2
180°	π	0	-1	0	Undefined	-1	Undefined
210°	7π/6	-1/2	- 12	√3/3	$\sqrt{3}$	-2/3/3	-2
225°	5π/4	- √2 / 2	$-\sqrt{2}/2$	1	1	- \sqrt{2}	- 12
240°	4π/3	$-\sqrt{3}/2$	-1/2	$\sqrt{3}$	$\sqrt{3}/3$	-2	$-2\sqrt{3}/3$
270°	3π/2	-1	0	Undefined	0	Undefined	-1
300°	5π/3	$-\sqrt{3}/2$	1/2	- \sqrt{3}	- \sqrt{3}	2	$-2\sqrt{3}/3$
315°	7π/4	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1	-1	$\sqrt{2}$	- \sqrt{2}
330°	11π/6	-1/2	$\sqrt{3}/2$	- \sqrt{3} / 3	- \sqrt{3}	2/3/3	-2
360°	2π	0	1	0	Undefined	1	Undefined

2.1.4 Graphs of f and f^{-1}

Inverse Functions

The inverse of a function *f* is denoted by f^{-1} . The inverse reverses the original function. Hence, if f(a) = b then $f^{-1}(b) = a$

Note: $f^{-1}(x)$ does **not** mean 1/f(x).

One to one Functions

If a function is to have an inverse which is also a function then it must be **one to one**. This means that a horizontal line will never cut the graph more than once. i.e we cannot have f(a) = f(b) if $a \neq b$, Two different inputs (*x* values) are not allowed to give the same output (*y* value).

Drawing the graph of the Inverse

The graph of $y = f^{-1}(x)$ is the reflection in the line y = x of the graph of y = f(x).

Example: Find the inverse of the function $y = f(x) = (x-2)^2 + 3$, $x \ge 2$

Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same axes showing the relationship between them.

Domain:

This is the function we considered earlier except that its domain has been restricted to $x \ge 2$ in order to make it one-to-one. We know that the Range of *f* is $y \ge 3$ and so the domain of f^{-1} will be $x \ge 3$.

Rule:

Swap x and y to get $x = (y-2)^2 + 3$. Now make y the main subject: $x-3 = (y-2)^2$ $\sqrt{(x-3)} = y-2$ $y = 2 + \sqrt{(x-3)}$

Hence, the final answer is: $f^{-1}(x) = 2 + \sqrt{(x-3)}$, $x \ge 3$

Graphs

Reflect in y = x to get the graph of the inverse function.

Note: Remember with inverse functions everything swaps over. Input and output (x and y) swap over Domain and Range swap over Reflecting in y = x swaps over the coordinates of a point so (a,b) on one graph becomes (b,a) on the other.

Note: we could also have $-\sqrt{(x-3)} = y-2$ and $y = 2 - \sqrt{(x-3)}$ But this would not fit our function as y must be greater than 2 (see graph)

2.2.1 Definition of Hyperbolic Functions

- Hyperbolic Sine, pronounced "shine". $\sinh x = \frac{e^x - e^{-x}}{2}$
- **Hyperbolic Cosine**, pronounced "cosh".

 $\cosh x = \frac{e^x + e^{-x}}{2}$

 Hyperbolic Tangent, pronounced "tanh".

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Hyperbolic Secant, pronounced "shek".

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

Hyperbolic Cosecant, pronounced
 "coshek".

$$\operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

Hyperbolic Cotangent, pronounced
 "coth".

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

2.2.2 Graphs of Hyperbolic Functions

Since the hyperbolic functions depend on the values of e^x and e^{-x} , its graphs is a combination of the exponential graphs.

- (i) $\cosh 0 = 1$
- (ii) The domain is all real numbers.
- (iii) The value of $\cosh x$ is never less than 1.
- (iv) The curve is symmetrical about the y-axis, i.e. $\cosh(-x) = \cosh x$
- (v) For any given value of $\cosh x$, there are two values of x.

(iii) Graph of tanh x

We see

- (i) $\tanh 0 = 0$
- (ii) $\tanh x$ always lies between y = -1 and y = 1.
- (iii) $\tanh(-x) = -\tanh x$
- (iv) It has horizontal asymptotes $y = \pm 1$.

2.2.3 Hyperbolic Identities

For every identity obeyed by trigonometric functions, there is a corresponding identity obeyed by hyperbolic functions.

1.
$$\cosh^2 x - \sinh^2 x = 1$$

2. $1 - \tanh^2 x = \sec h^2 x$
3. $\coth^2 x - 1 = \csc ech^2 x$
4. $\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$
5. $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$
6. $\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
7. $\sinh 2x = 2\sinh x \cosh x$
8. $\cosh 2x = \cosh^2 x + \sinh^2 x$
 $= 2\cosh^2 x - 1$
 $= 2\sinh^2 x + 1$
9. $\tanh 2x = \frac{2\tanh x}{1 \pm \tanh x}$

9.
$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

Some of the hyperbolic identities follow exactly the trig. identities; others have a difference in sign.

Trig. Identities	Hyperbolic Identities
$\sec\theta \equiv \frac{1}{\cos\theta}$	$\operatorname{sech}\theta = \frac{1}{\cosh\theta}$
$\csc\theta \equiv \frac{1}{\sin\theta}$	$\operatorname{cosech}\theta = \frac{1}{\sinh\theta}$
$\cot \theta \equiv \frac{1}{\tan \theta}$	$\coth\theta = \frac{1}{\tanh\theta}$
$\cos^2\theta + \sin^2\theta \equiv 1$	$\cosh^2\theta - \sinh^2\theta = 1$
$1 + \tan^2 \theta \equiv \sec^2 \theta$	$1 - \tanh^2 \theta = \operatorname{sech}^2 \theta$
$1 + \cot^2 \theta \equiv \csc^2 \theta$	$\operatorname{coth}^2 \theta - 1 = \operatorname{cosech}^2 \theta$
$\sin 2A \equiv 2\sin A \cos A$	$\sinh 2A \equiv 2\sinh A \cosh A$
$\cos 2A \equiv \cos^2 A - \sin^2 A$	$\cosh 2A \equiv \cosh^2 A + \sinh^2 A$
$\equiv 1 - 2\mathrm{sin}^2 A$	$= 1 + 2 \sinh^2 A$
$\equiv 2\cos^2 A - 1$	$= 2\cosh^2 A - 1$

Examples 2.1

- Sketch the graph of the following functions. State the domain and range.
 a) y = sinh x + 2
 b) y = 2tanh 3x
- 2. By using definition of hyperbolic functions,

a) Evaluate sinh(-4) and cosh(ln 2) to four decimal places.
b) Show that 2 cosh²x - 1 = cosh 2x
c) Show that cosh²x - sinh²x = 1

3. By using identities of hyperbolic functions, show that

 $\frac{1 - \tanh^2 x}{1 + \tanh^2 x} = \operatorname{sech} 2x$

4. Solve the following for *x*, giving your answer in 4dcp.

a) $2\cosh x - \sinh x = 2$ b) $\cosh 2x - \sinh x = 1$