CHAPTER 2

FURTHER TRANSCENDENTAL FUNCTIONS

2.1 Review

2.1.1 Graphs of Trigonometric Functions
2.1.2 Graphs of Exponential Functions
2.1.3 Trigonometric Identities
2.1.4 Graphs of f and f^{-1}
2.2 Hyperbolic Functions
2.2.1 Definition of Hyperbolic Functions
2.2.2 Graphs of Hyperbolic Functions
2.2.3 Hyperbolic Identities
2.3 Inverse Functions
2.3.1 Inverse Trigonometric Functions
2.3.2 Inverse Trigonometric Identities
2.3.3 Inverse Hyperbolic Functions
2.3.4 Log Form of the Inverse Hyperbolic Functions

2.1 Review

2.1.1 Graphs of Trigonometric Functions

- Period: 2π
- Domain: All real numbers
- Range: $[-1,1]$
- Symmetric with respect to the origin

Graph of $y=\cos x$

- Period: 2π
- Domain: All real numbers
- Range: $[-1,1]$
- Symmetric with respect to the y axis

Graph of $y=\tan x$

- Period: π
- Domain: All real numbers except $\pi / 2+k \pi, k$ is an integer
- Range: All real numbers
- Symmetric with respect to origin

Graph of $y=\cot x$

- Period: π
- Domain: All real numbers except $k \pi, k$ is an integer
- Range: All real numbers
- Symmetric with respect to origin

2.1.2 Graphs of Exponential Functions

Graph of $y=a^{x}, 0<a<1$

- Domain: $(-\infty, \infty)$, Range: $(0, \infty)$
- Natural Exponential Function $f(x)=e^{x}$

2.1.3 Trigonometric Identities

TRIGONOMETRIC IDENTITIES

$$
\begin{aligned}
& \text { The six trigonometric functions: } \\
& \begin{array}{rlrl}
\sin \theta & =\frac{\text { opp }}{\text { hyp }}=\frac{y}{r} & \csc \theta & =\frac{\text { hyp }}{\text { opp }}=\frac{r}{y}=\frac{1}{\sin \theta} \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{x}{r} & \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{r}{x}=\frac{1}{\cos \theta} \\
\tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{y}{x}=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{x}{y}=\frac{1}{\tan \theta}
\end{array}
\end{aligned}
$$

Sum or difference of two angles:
$\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b$
$\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b$
$\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b$

$$
\tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}
$$

Double angle formulas:
$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\cos 2 \theta=1-2 \sin ^{2} \theta
$$

Pythagorean Identities: $\tan ^{2} \theta+1=\sec ^{2} \theta$

Half angle formulas:
$\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
$\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}$
$\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$
$\tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{\sin \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\sin \theta}$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\cos 2 \theta=2 \cos ^{2} \theta-1$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$

Sum and product formulas:
$\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]$
$\cos a \sin b=\frac{1}{2}[\sin (a+b)-\sin (a-b)]$
$\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]$
$\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]$
$\sin a+\sin b=2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$
$\sin a-\sin b=2 \cos \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$
$\cos a+\cos b=2 \cos \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$
$\cos a-\cos b=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)$
Law of cosines: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$ where A is the angle of a scalene triangle opposite side a.
Radian measure: 8.1 p420 $\quad 1^{\circ}=\frac{\pi}{180}$ radians
1 radian $=\frac{180^{\circ}}{\pi}$
Reduction formulas: $\sin (-\theta)=-\sin \theta$
$\sin (\theta)=-\sin (\theta-\pi)$
$\boldsymbol{\operatorname { t a n }}(-\theta)=-\boldsymbol{\operatorname { t a n }} \theta$
$\mp \sin x=\cos \left(x \pm \frac{\pi}{2}\right)$
$\cos (-\theta)=\cos \theta$ $\cos (\theta)=-\cos (\theta-\pi)$ $\boldsymbol{\operatorname { t a n }}(\theta)=\boldsymbol{\operatorname { t a n }}(\theta-\pi)$ $\pm \cos x=\sin \left(x \pm \frac{\pi}{2}\right)$

$$
e^{ \pm / \theta}=\cos \theta \pm j \sin \theta
$$

$$
\sin \theta=\frac{1}{j 2}\left(e^{j \theta}-e^{-j \theta}\right)
$$

TRIGONOMETRIC VALUES FOR COMMON ANGLES

Degrees	Radians	$\boldsymbol{\operatorname { s i n }} \theta$	$\boldsymbol{\operatorname { c o s }} \theta$	$\boldsymbol{t a n} \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
0°	-	o	1	0	Undefined	1	Undefined
30°	$\pi / 6$	1/2	$\sqrt{3} / 2$	$\sqrt{3} / 3$	$\sqrt{3}$	$2 \sqrt{3} / 3$	2
45°	$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\pi / 3$	$\sqrt{3} / 2$	1/2	$\sqrt{3}$	$\sqrt{3} / 3$	2	$2 \sqrt{3} / 3$
90°	$\pi / 2$	1	0	Undefined	0	Undefined	1
120°	$2 \pi / 3$	$\sqrt{3} / 2$	-1/2	$-\sqrt{3}$	$-\sqrt{3} / 3$	-2	$2 \sqrt{3} / 3$
135°	$3 \pi / 4$	$\sqrt{2} / 2$	$-\sqrt{2} / 2$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	5 $/ 6$	1/2	$-\sqrt{3} / 2$	$-\sqrt{3} / 3$	$-\sqrt{3}$	$-2 \sqrt{3} / 3$	2
180°	π	o	-1	0	Undefined	-1	Undefined
210°	$7 \pi / 6$	-1/2	$-\sqrt{3} / 2$	$\sqrt{3} / 3$	$\sqrt{3}$	$-2 \sqrt{3} / 3$	-2
$225{ }^{\circ}$	$5 \pi / 4$	$-\sqrt{2} / 2$	$-\sqrt{2} / 2$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$4 \pi / 3$	$-\sqrt{3} / 2$	-1/2	$\sqrt{3}$	$\sqrt{3} / 3$	-2	$-2 \sqrt{3} / 3$
270°	$3 \pi / 2$	-1	0	Undefined	0	Undefined	-1
300°	$5 \pi / 3$	$-\sqrt{3} / 2$	1/2	$-\sqrt{3}$	$-\sqrt{3}$	2	$-2 \sqrt{3} / 3$
315°	$7 \pi / 4$	$-\sqrt{2} / 2$	$\sqrt{2} / 2$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	11 $\pi / 6$	-1/2	$\sqrt{3} / 2$	$-\sqrt{3} / 3$	- $-\sqrt{3}$	$2 \sqrt{3} / 3$	-2

2.1.4 Graphs of \boldsymbol{f} and \boldsymbol{f}^{-1}

Inverse Functions

The inverse of a function f is denoted by f^{-1}. The inverse reverses the original function.
Hence, if $f(\mathrm{a})=\mathrm{b}$ then $f^{-1}(\mathrm{~b})=\mathrm{a}$
Note: $f^{-1}(\mathrm{x})$ does not mean $1 / f(x)$.

One to one Functions

If a function is to have an inverse which is also a function then it must be one to one.
This means that a horizontal line will never cut the graph more than once. i.e we cannot have $f(\mathrm{a})=f(\mathrm{~b})$ if $\mathrm{a} \neq \mathrm{b}$,
Two different inputs (x values) are not allowed to give the same output (y value).
For instance $f(-2)=f(2)=4$
$y=f(x)=x^{2}$ with domain $\mathrm{x} \in \mathfrak{\Re}$ is not one to one.

Drawing the graph of the Inverse

The graph of $y=f^{-1}(x)$ is the reflection in the line $y=x$ of the graph of $y=f(x)$.
Example: Find the inverse of the function $y=f(x)=(x-2)^{2}+3, x \geq 2$
Sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ on the same axes showing the relationship between them.

Domain:

This is the function we considered earlier except that its domain has been restricted to $x \geq 2$ in order to make it one-to-one. We know that the Range of f is $y \geq 3$ and so the domain of f^{-1} will be $x \geq 3$.

Rule:

Swap x and y to get $x=(y-2)^{2}+3$. Now make y the main subject:

$$
\begin{gathered}
x-3=(y-2)^{2} \\
\sqrt{ }(x-3)=y-2 \\
y=2+\sqrt{ }(x-3)
\end{gathered}
$$

Hence, the final answer is: $f^{-1}(x)=2+\sqrt{ }(x-3), x \geq 3$

Graphs

Reflect in $y=x$ to get the graph of the inverse function.

Note:
Remember with inverse functions everything swaps over. Input and output (x and y) swap over
Domain and Range swap over
Reflecting in $\mathrm{y}=\mathrm{x}$ swaps over the coordinates of a point so (a, b) on one graph becomes (b, a) on the other.

```
Note: we could also have
- \sqrt{}{(x-3) = y-2}
and y=2-\sqrt{}{(x-3)}
But this would not fit our function as \(y\) must be greater than 2 (see graph)
```


2.2.1 Definition of Hyperbolic Functions

* Hyperbolic Sine, pronounced "shine".

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

* Hyperbolic Cosine, pronounced "cosh".

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

* Hyperbolic Tangent, pronounced "tanh".
$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \equiv \frac{e^{2 x}-1}{e^{2 x}+1}$
* Hyperbolic Secant, pronounced "shek".

$$
\operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}
$$

* Hyperbolic Cosecant, pronounced "coshek".

$$
\operatorname{cosech} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}
$$

* Hyperbolic Cotangent, pronounced "coth".

$$
\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}
$$

2.2.2 Graphs of Hyperbolic Functions

Since the hyperbolic functions depend on the values of e^{x} and e^{-x}, its graphs is a combination of the exponential graphs.

(ii) Graph of $\cosh x$

(i) $\cosh 0=1$
(ii) The domain is all real numbers.
(iii) The value of $\cosh x$ is never less than 1 .
(iv) The curve is symmetrical about the y-axis, i.e. $\cosh (-x)=\cosh x$
(v) For any given value of $\cosh x$, there are two values of x.
(iii) Graph of $\tanh x$

We see
(i) $\quad \tanh 0=0$
(ii) $\quad \tanh x$ always lies between $y=-1$ and $y=1$.
(iii) $\tanh (-x)=-\tanh x$
(iv) It has horizontal asymptotes $y= \pm 1$.

2.2.3 Hyperbolic Identities

For every identity obeyed by trigonometric functions, there is a corresponding identity obeyed by hyperbolic functions.

1. $\cosh ^{2} x-\sinh ^{2} x=1$
2. $1-\tanh ^{2} x=\sec h^{2} x$
3. $\operatorname{coth}^{2} x-1=\operatorname{cosech}^{2} x$
4. $\quad \sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$
5. $\quad \cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
6. $\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
7. $\sinh 2 x=2 \sinh x \cosh x$
8. $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$

$$
=2 \cosh ^{2} x-1
$$

$$
=2 \sinh ^{2} x+1
$$

9. $\tanh 2 x=\frac{2 \tanh x}{1+\tanh ^{2} x}$

Some of the hyperbolic identities follow exactly the trig. identities; others have a difference in sign.

Trig. Identities	Hyperbolic Identities
$\begin{aligned} \sec \theta & \equiv \frac{1}{\cos \theta} \\ \operatorname{cosec} \theta & \equiv \frac{1}{\sin \theta} \\ \cot \theta & \equiv \frac{1}{\tan \theta} \end{aligned}$	$\begin{aligned} & \operatorname{sech} \theta=\frac{1}{\cosh \theta} \\ & \operatorname{cosech} \theta=\frac{1}{\sinh \theta} \\ & \operatorname{coth} \theta=\frac{1}{\tanh \theta} \end{aligned}$
$\begin{gathered} \cos ^{2} \theta+\sin ^{2} \theta \equiv 1 \\ 1+\tan ^{2} \theta \equiv \sec ^{2} \theta \\ 1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta \end{gathered}$	$\cosh ^{2} \theta-\sinh ^{2} \theta \equiv 1$ $1-\tanh ^{2} \theta \equiv \operatorname{sech}^{2} \theta$ $\operatorname{coth}^{2} \theta-1 \equiv \operatorname{cosech}^{2} \theta$
$\begin{gathered} \sin 2 A \equiv 2 \sin A \cos A \\ \cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \\ \equiv 1-2 \sin ^{2} A \\ \equiv 2 \cos ^{2} A-1 \end{gathered}$	$\begin{aligned} \sinh 2 A & \equiv 2 \sinh ^{2} A \cosh A \\ \cosh 2 A & \equiv \cosh ^{2} A+\sinh ^{2} A \\ & \equiv 1+2 \sinh ^{2} A \\ & \equiv 2 \cosh ^{2} A-1 \end{aligned}$

Examples 2.1

1. Sketch the graph of the following functions. State the domain and range.
a) $y=\sinh x+2$
b) $y=2 \tanh 3 x$
2. By using definition of hyperbolic functions,
a) Evaluate $\sinh (-4)$ and $\cosh (\ln 2)$ to four decimal places.
b) Show that $2 \cosh ^{2} x-1=\cosh 2 x$
c) Show that $\cosh ^{2} x-\sinh ^{2} x=1$
3. By using identities of hyperbolic functions, show that

$$
\frac{1-\tanh ^{2} x}{1+\tanh ^{2} x}=\operatorname{sech} 2 x
$$

4. Solve the following for x, giving your answer in 4 dcp .
a) $2 \cosh x-\sinh x=2$
b) $\cosh 2 x-\sinh x=1$
