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CHAPTER 4

INTEGRATION

Integration of hyperbolic functions
Integration of inverse trigonometric functions
Integration of inverse hyperbolic functions
Further Applications of Integrations

Recall: Methods involved:
- Substitution of u
- By parts
- Tabular method
- Partial fractions




4.1 Integrals of Hyperbolic Functions

Integral Formulae

1. fsinh xdx = coshx + C

2. fcoshxdx =sinhx + C

3. fsech’xdx = tanhx + C

4. [cosech’xdx = —cothx +C

5. [sechxtanh xdx = —sechx +C

6. fcos echx coth xdx = —cosechx + C




Example 1:

Integrate the following hyperbolic functions using appropriate
technique (definition, identities, etc) and method (substitution, by
parts, tabular, etc).

a)  [sinh2xcosh3xdx

cosh x

b) :
2+ 3sinh x

c) | sinh’ x dx

d) [xcosh2xdx
X X
inh| — h|—|d
€) [sin (z)cos (2) X

f)  [+tanhxsec W x dx



4.2 Integration of Inverse Trigonometric Functions

Integration formulae of the Inverse Trigonometric Functions

Differentiation Integration
d . _1 | dx . 1
—(sIn " X)) =—— ————=sin  x+C
dx ]-x? f\/l—xz
d -1 —1 —dx -1
—(cos " x)=—— ———=cos  x+C
| dx -1
(tan_l x)=— f 5 =tan x+C
dx 1+x2 l+x
-1 —dx -1
—(cot " x)= =
(cot ™ x) f s =cot” x+C
dx 1+ x2 1+ x
d dx _1
(sec ™ x) = =sec x+C
dx xlv x2 =1 fx\/xz—l
d(Csc_lx)= B f _ix —csc x4 C
dx x|V x2 =1 |7 xNxT -1




Example 2 :

1. Evaluate the following integrals

1
a) I tan -1 xdx
0

sin_l X

b) | "',ﬁ dx
V1—x

2. Use partial fraction decomposition to solve
L x? = 2x
) . dx .
0(2x+1)(x" +1)




Example 3 : Evaluate the following integrals

dx
V16 —x
2dx
by | 5
3+x
'\"1—4.\‘2
dx
by | ;
4+3x

3. Use completing the square technique to solve:

dx
a) [— 5
V=—x“+2x+3

> | 2—2r+2

4. By using substitution ¢ = tan(g) , show that

i dx =gtan‘1(ltan(z))+C
3 2

5+4cosx 3



4.3 Integration involving Inverse Hyperbolic Functions

Integration formulae of the Inverse Hyperbolic Functions:

Differentiation Integration

d . . 1 dx -1
—(sinh™" x) = —— f=smh x+C
dx ( ) 1+x° V1+x?

d(cosh_lx) = : fdx=cosh_1x+C
dx x? -1 x> =1

d(tanh_lx) = I dx2 —tanh ' x+C
dx — x2 l-x




Example 4:
1. Solve the following:

J dx
Y ‘J3x2-+2
dx
J ;
Jth—3) +1

b)

I dx
Jx2+4x+3

2. Showthat] X+l a'x:\/x2 +1+sinh_1x+C.

Vx2+l




4.4 Further Applications of Integrations
4.4.1 Arc Length in Cartesian Form

The length of the curve (x(¢), y(¢)) as ¢ varies from ¢, to ¢, is given by

t=t
1\/ ()% + (v'(t))°dt

t=to

Example 5:

Consider the curve given by x(z) = cos ¢, y(t) = sint,0 <¢ <. Find the
length of the curve. (ans: pi)

Its length is:



If we wish to find the length of a curve which is the graph of a function

yv=f(x),asx=<b,
we let

x(t)=t, y@)=f(x()=f(x)

and we get

x'(t) =1and y'(z) = f'(x(1)x'(t) = f'(x),

so we have a simple formula for the length:
x=b b b
r- J1+(f%xqfdx::j J1+(fwx)ﬁdx::J V1 + (v)2dx

Similarly, if we have a curve x = g(y), c= y<d, we get

—d d d
m= [ \/1 + (g’ () °dy = L \/1 +(g'(»)°dy = L V1 + (x')*dy

y=c

Example 6:
Find the length of the curve
3
a) y=%(.x2 +2)2, OS)CS3. (ans:12)
) 3
b) x=§(y_1)2, lsys4. (ans:14/3)
Example 7:

Find the length of the arc of the parabola y* = x from (0, 0) to (1, 1).

V5 In(v5+2)
-5t

L= 1

Ans:
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Arc Length with Polar Coordinates

We now need to move into the Calculus II applications of integrals and how we do them in terms of polar coordingigs==lg this section we’ll look at the arc length of the curve given by,

where we also assume that the curve is traced out exactly once. Just as we did with the tangent lines in pgla

and we can now use the parametric formula for finding the arc length.

We’ll need the following derivatives for these computations.

dx . dy .
—= f()cos 8- f (&)sin & = =f'{8)an 8+ f(F)cos 8
& = 1(O)cos -1 (6) 2 - 1/(8)sn6+7(6)

=d—rcosg—rsin5 =d—rsin9+rc059
d dé

(%) (3

We’ll need the following for our ds.

dr  far ) :
—cos@—ran8| +|—sin8+rcosé
dé de

2
[ﬂ] cos? 9—2r£cos6§n B+risin’8
dé de
2
+[£ sin’9+2r£cos€sm9+r’ cos’ d
ae dé

Ve
= [ﬁ} (cos2 8+sin® 9) +r? (t:os2 H+3sn’? 6)

9 dr2
=ri+| =
dé

The arc length formula for polar coordinates is then,

L=[ds
where,
dr

7
ds= |r*+|— | d8
de




4.4.2 Arc Length in Polar Coordinates

The length of a curve with polar equation » = f(0), a <0< b, is

pb 1"' ‘ ([/‘ 2
[4 - f I"3 —+ — l”)
./“ \" df

Example 8:
a) Find the length of the curve r =6, 0<6 <1.

1 — ‘ —
31‘ v2+In(1+v2))

b) Find the length of the cardioid » =1-cosé, 0 <6 < 2.

Ans: 8

Surface of Revolution

A surface of revolution is a surface generated by rotating a two-
dimensional curve about an axis. The resulting surface therefore
always has azimuthal symmetry. Examples of surfaces of
revolution include the apple, cone, frustum, cylinder,lemon,
sphere, etc.
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cone oblate spheroid

h

r

conical frustum prolate spheroid
R, o
h
- a<c
R,
-
cylinder zone

h

4.4.3 Area of Surface of Revolution in Cartesian Form

Let’s start with some simple surfaces. The lateral surface area of a
circular cylinder with radius r and height 4 is taken to be A = 2nrh
because we can imagine cutting the cylinder and unrolling it (as in
Figure 1) to obtain a rectangle with dimensions 27r and A.

27rr

FIGURE 1

12



FIGURE 2

Likewise, we can take a circular cone with base radius » and slant
height / , cut it along the dashed line in Figure 2, and flatten it to form a

: : : 2
sector of a circle with radius / and central angle 6 = %T We know
that, in general, the area of a sector of a circle with radius

[ and angle 9 is %ZZH. So in this case it is

2
A=1129=1p Tm = 77l

Therefore, we define the lateral surface area of a cone to be A = nrl.

\ ;

T‘
|
|
!
|
|
P
/ ommmban \
——
-

-

FIGURE 3

What about more complicated surfaces of revolution? If we follow the
strategy we used with arc length, we can approximate the original

13



curve by a polygon. When this polygon is rotated about an axis, it
creates a simpler surface whose surface area approximates the actual
surface area. By taking a limit, we can determine the exact surface
area.

The approximating surface, then, consists of a number of bands, each
formed by rotating a line segment about an axis. To find the surface
area, each of these bands can be considered a portion of a circular
cone, as shown in Figure 3. The area of the band (or frustum of a cone)
with slant height / and upper and lower radii r; and 7, is found by
subtracting the areas of two cones:

A= 7Tr2(ll -+ l) - 7rr111 == 7T[(r2 - r1)11 -+ rzl] [1]
From similar triangles we have

L L+

r r2
which gives

rzll = r111 o= rll or (I‘z - r1)11 = rll

Putting this in Equation 1, we get

A= 7T(rll + rzl)

or

A = 2arl 2]

where r = % (r; + 1) is the average radius of the band.

So, for the purposes of the derivation of the formula, let’s look at rotating the

continuous function y = f(x) in the interval [a, b] about the x-axis. We'll also

need to assume that the derivative is continuous on [a, b]. Below is a sketch of a
14



function and the solid of revolution we get by rotating the function about the x-
axis.

a p -

We can derive a formula for the surface area much as we derived the formula
for arc length. We’ll start by dividing the interval into n equal subintervals of
width Ax. On each subinterval we will approximate the function with a straight
line that agrees with the function at the endpoints of the each interval. Here is a
sketch of that for our representative function using n = 4.

y A

L L x
a b
Now, rotate the approximations about the x-axis and we get the following solid.

15



The approximation on each interval gives a distinct portion of the solid and
to make this clear each portion is colored differently. Each of these
portions are called frustums. To find the surface area of frustums is already

discussed above.

16



oy=fix

o |

FIGURE 4

S

(a) Surface of revolution

(b) Approximating band

Now we apply this formula to our strategy. Consider the surface shown in Figure 4,
which is obtained by rotating the curve y = f(x), a = x = b, about the x-axis, where f is
positive and has a continuous derivative. In order to define its surface area, we divide the
interval [a, b] into n subintervals with endpoints x;, x,, .. ., X, and equal width Ax, as we
did in determining arc length. If y; = f(x;), then the point P;(x;, y;) lies on the curve. The
part of the surface between x; | and x; is approximated by taking the line segment P, P,
and rotating it about the x-axis. The result is a band with slant height / = | P, \P;| and aver-
age radius » = 3(y,., + y;) so, by Formula 2, its surface area is

i + i
2'11'—)l .

2 |P1 lPl]

As in the proof of Theorem 7.4.2, we have

|P1 IP||=V1 +[f’(xl*)]:Ax

where x* is some number in [x;- 1, x;]. When Ax is small, we have y; = f(x;) = f(x*) and
also yi-1 = f(xi-1) = f(x¥), since f is continuous. Therefore

zu,ry”T”' |PiiPi| = 2mf () VT + [T Ax

and so an approximation to what we think of as the area of the complete surface of revo-
lution is

=

5. 2m/(at) VT + (7T Ax

This approximation appears to become better as n — % and, recognizing (3) as a Riemann

sum for the function g(x) = 2mf(x) /1 + [f'(x)]*, we have

n

lim 3 2/(x?) T+ GO Ax = L” 27f(x) V1 + [ D] d

=L .

Therefore, in the case where f'is positive and has a continuous
derivative, we define the surface area of the surface obtained by
rotating the curve (x(#),y(¢)), t; <t < t, about the x- and y—axes

respectively:

Sx

t
Lz 21ty () (1)2 + (v (0)) 2t
1

Ltz 21Tx(t)\/(x’(t))2 + (y'(1))%dt
1
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If the curve is the graph of a function y = f(x), a <x < b, then the area
of the surface obtained by revolving the curve about the x-axis is

b
Se= | 2mf N1+ (£1(x)2dx

and the area of the surface obtained by revolving the curve about the
y-axis is

‘ Sy = J: 27TX\/1 + (f(x))%dx

If the curve is the graph of a function x = g(y), ¢ <x < d, then the area
of the surface obtained by revolving the curve about the x-axis is

' d
Sx = JC 21Ty\/1 +(g'(»)°dy |

and the area of the surface obtained by revolving the curve about the
y-axis is

d
S = L 21Tg(y)\/1 +(g'(y)dy

These formulas can be remembered by thinking of 27y or 27rx as the circumference of a
circle traced out by the point (x, y) on the curve as it is rotated about the x-axis or y-axis,

respectively (see Figure 5).

(a) Rotation about x-axis: § = [ 27y ds (b) Rotation about y-axis: S = [ 27rxds

YA

circumference = 27rx

circumference = 27y

18



Example 9:

a) Find the area of the surface obtained by rotating the curve
y2 =4x+4,0<x <8, about the x-axis.

'u
> o N C

| 1 |
(. L S S

b) Find the area of the surface obtained by rotating the curve
x=1+2y", 1<y <2, about the x-axis.

4.4.4 Area of a Surface of Revolution in Polar Form

The areas of the surfaces generated by revolving the curve
r = f(60), a <6 <b about the x- and y-axis are given by the following

formulas:

* Revolution about x-axis, (y = 0):

b dr\’
S.=[2nrsind,|r’ +| | dO
a do

* Revolution about y-axis, x = 0:

19



b dr 2
S, = [27rcosd Pl = do
Yo dé

Example 10:

Find the area of the surface generated by revolving

r =+/cos20, 0595%

about the x-axis.

0.35

0.3 ’ TSN
0.25
0.2
0.15
0.1

Q.05 \

Ans: 2.7t—2ﬂ

V2
Summary Formula for Area of Revolution:
Type of Revolve about x-axis Revolve about y-axis
Equation
Parametric

t2

— 2 ’ 2 ’ 2 | . , 2 ) 5
x=f(1), Sx = LI 21Ty(t)\/(x ()" + (y'(t))°dt| S, = . 2nx(t)\/(x (1)) + (y'(t))°dt

y=g(@)

y=f(x)

b b
Sx = L 2Trf(x)\/1 + (f'(x))%dx = J 2nx\/1 +(f'(x))°dx

4 - .
x=g(y)| s = J 21 + (g’ () 2dy ‘ G = L 2mg (YW1 + (g’ () *dy

20




Polar form b ar\’ b a2
. 2 2
r=£(6) S, ={2mfs1n6’ r +(dﬁ) do S, ={2EFCOS(9 r +(d8) do
Appendix:

1. Partial fraction decomposition.

21




S.No.

Form of the rational function

Form of the partial fraction

I~
Ll

w

hn

px+4q

(x—a) (x-b)

& D

‘ PX+(

(x— (1)2

gt
x—a)(x=b)(x—rc)

Xl gx+r
(x—a)? (x-D)

Pl +gx+r
x—a)@? +bx+c)

A B
+

x—a x-b

A B

+ 2
X—a (x—a)

A BB
+——+

X—-a x-b x-c

A B C
- —
(x—a)y x->b

X—d

| A Bx+C
+ 2 -
x“+bx+c

X—a

where x? + bx + ¢ cannot be factorised further

2. Integrations involving \/ Ax* +Bx+C

Expression

Substitution

X'+ k7

x=ktan@ or x =ksinh@

Jx* =k

x=ksecl or x=kcosh@

2 2
k“—=x

x=ksin@ or x =ktanh@
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