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CHAPTER 4 

 
INTEGRATION 

 
4.1  Integration of hyperbolic functions 
4.2  Integration of inverse trigonometric functions 
4.3  Integration of inverse hyperbolic functions 
4.4  Further Applications of Integrations 

 
 
 
Recall: Methods involved: 
- Substitution of u 
- By parts 
- Tabular method 
- Partial fractions 
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4.1 Integrals of Hyperbolic Functions 
 

 
Integral Formulae 

 
1. sinh coshxdx x C= +∫  

 
2. cosh sinhxdx x C= +∫  

 
3. 2sec tanhh xdx x C= +∫  

 
4. 2cosech xdx coth x C= − +∫  

 
5. sec tanh sechx xdx hx C= − +∫  

 
6. cos coth cosechx xdx echx C= − +∫  
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Example 1:  
Integrate the following hyperbolic functions using appropriate 
technique (definition, identities, etc) and method (substitution, by 
parts, tabular, etc). 
 

a) sinh2 cosh3x xdx∫   

b) cosh
2 3sinh

x dx
x∫

+
 

c) 3sinh xdx∫   

d) cosh2x xdx∫   

e) sinh cosh
2 2
x x dx⎛ ⎞ ⎛ ⎞

∫ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

f) 2tanh secx h xdx∫   
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4.2  Integration of Inverse Trigonometric Functions  
 

Integration formulae of the Inverse Trigonometric Functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differentiation Integration 
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Example 2 :  

1. Evaluate the following integrals  

 
 

2. Use partial fraction decomposition to solve  
21

2
0

2
(2 1)( 1)
x x dx
x x

−
∫

+ +
 . 
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Example 3 : Evaluate the following integrals  
 
 

 
 
 

 
 
3. Use completing the square technique to solve: 

 
 
 

4. By using substitution tan
2
xt ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 , show that 

12 1tan tan
5 4cos 3 3 2
dx x C

x
− ⎛ ⎞⎛ ⎞= +∫ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
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4.3  Integration involving Inverse Hyperbolic Functions 

 

Integration formulae of the Inverse Hyperbolic Functions: 

Differentiation Integration 
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Example 4:  
1.  Solve the following: 

 
 
a) 
 
 
 
b) 
 
 
 
 
 
c) 
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4.4 Further Applications of Integrations 
 
4.4.1 Arc Length in Cartesian Form 
 
The length of the curve ( ( ), ( ))x t y t  as t varies from 0t  to 1t  is given by  

 
 
Example 5: 
 
Consider the curve given by x(t) = cos t, y(t) = sin t ,0 ≤ t ≤ π. Find the 
length of the curve.        (ans: pi) 
 
Its length is:        
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If we wish to find the length of a curve which is the graph of a function  
( )y f x= , a x b≤ ≤ ,  

we let  
( ) , ( ) ( ( )) ( )x t t y t f x t f x= = =  

and we get  

'( ) 1x t =  and '( ) '( ( )) '( ) '( )y t f x t x t f x= = , 

so we have a simple formula for the length: 

 
 
Similarly, if we have a curve (y)x g= , c y d≤ ≤ , we get 
 

 
 
 
Example 6: 
 
Find the length of the curve  

a) 
3

2 21 ( 2) , 0 3.
3

y x x= + ≤ ≤        (ans:12) 

b) 
3
22 ( 1) , 1 4.

3
x y y= − ≤ ≤         (ans:14/3) 

  
Example 7: 
Find the length of the arc of the parabola 2y x=  from (0, 0) to (1, 1). 
 

Ans:  
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4.4.2 Arc Length in Polar Coordinates 
 
The length of a curve with polar equation r = f(θ), a ≤ θ ≤ b, is 
 

 
 
Example 8: 

a) Find the length of the curve , 0 1.r θ θ= ≤ ≤   
 

 
 
 

b) Find the length of the cardioid 1 cos , 0 2 .r θ θ π= − ≤ ≤   
Ans: 8 

 
 
 
Surface of Revolution 
 
A surface of revolution is a surface generated by rotating a two-
dimensional curve about an axis. The resulting surface therefore 
always has azimuthal symmetry. Examples of surfaces of 
revolution include the apple, cone, frustum, cylinder,lemon, 
sphere, etc. 
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4.4.3 Area of Surface of Revolution in Cartesian Form 
 
Let’s start with some simple surfaces. The lateral surface area of a 
circular cylinder with radius r and height h is taken to be ! = 2!"ℎ  
because we can imagine cutting the cylinder and unrolling it (as in 
Figure 1) to obtain a rectangle with dimensions 2!" and h. 
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Likewise, we can take a circular cone with base radius r and slant 
height l , cut it along the dashed line in Figure 2, and flatten it to form a 
sector of a circle with radius l and central angle ! = !!"

! . We know 
that, in general, the area of a sector of a circle with radius 

l and angle ! is !! !
!!. So in this case it is 

 
Therefore, we define the lateral surface area of a cone to be ! = !"#. 

 
What about more complicated surfaces of revolution? If we follow the 
strategy we used with arc length, we can approximate the original 
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curve by a polygon. When this polygon is rotated about an axis, it 
creates a simpler surface whose surface area approximates the actual 
surface area. By taking a limit, we can determine the exact surface 
area. 

The approximating surface, then, consists of a number of bands, each 
formed by rotating a line segment about an axis. To find the surface 
area, each of these bands can be considered a portion of a circular 
cone, as shown in Figure 3. The area of the band (or frustum of a cone) 
with slant height l and upper and lower radii !! and !! is found by 
subtracting the areas of two cones: 

[1] 

From similar triangles we have 

 
which gives 

 

 

Putting this in Equation 1, we get 

 
or 

   [2] 

where ! = !
! !! + !!  is the average radius of the band. 

 
So, for the purposes of the derivation of the formula, let’s look at rotating the 
continuous function  ! = !(!)  in the interval !, !  about the x-axis.  We'll also 
need to assume that the derivative is continuous on [a, b]. Below is a sketch of a 
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function and the solid of revolution we get by rotating the function about the x-
axis. 
 

 
 
We can derive a formula for the surface area much as we derived the formula 
for arc length.  We’ll start by dividing the interval into n equal subintervals of 
width ∆!.  On each subinterval we will approximate the function with a straight 
line that agrees with the function at the endpoints of the each interval.  Here is a 
sketch of that for our representative function using ! = 4. 

 
Now, rotate the approximations about the x-axis and we get the following solid. 
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The approximation on each interval gives a distinct portion of the solid and 
to make this clear each portion is colored differently. Each of these 
portions are called frustums. To find the surface area of frustums is already 
discussed above. 
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Therefore, in the case where f is positive and has a continuous 
derivative, we define the surface area of the surface obtained by 
rotating the curve (x(t),y(t)), t1 ≤ t ≤ t2 about the x- and y−axes 
respectively: 
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If the curve is the graph of a function y = f(x), a ≤ x ≤ b, then the area 
of the surface obtained by revolving the curve about the x-axis is 

 
 
and the area of the surface obtained by revolving the curve about the  
y-axis is 

 
 
If the curve is the graph of a function x = g(y), c ≤ x ≤ d, then the area 
of the surface obtained by revolving the curve about the x-axis is 
 

 
 
and the area of the surface obtained by revolving the curve about the  
y-axis is 
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Example 9: 
 

a) Find the area of the surface obtained by rotating the curve 
2 4 4y x= + , 0 ≤ x ≤ 8, about the x-axis. 

 

  Ans:  
 
 

b) Find the area of the surface obtained by rotating the curve 
21 2x y= + , 1 ≤ y ≤ 2, about the x-axis. 

Ans:  
 
 
 
 
4.4.4 Area of a Surface of Revolution in Polar Form 
 
The areas of the surfaces generated by revolving the curve 

( ),r f a bθ θ= ≤ ≤  about the x- and y-axis are given by the following 
formulas: 
 
• Revolution about x-axis, ( 0y ≥ ): 

2
22 sin

b

x
a

drS r r d
d

π θ θ
θ

⎛ ⎞= +∫ ⎜ ⎟
⎝ ⎠

 

 
• Revolution about y-axis, 0x ≥ : 
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2
22 cos

b

y
a

drS r r d
d

π θ θ
θ

⎛ ⎞= +∫ ⎜ ⎟
⎝ ⎠

 

 
 

Example 10: 
 
Find the area of the surface generated by revolving  

cos2 , 0
4

r π
θ θ= ≤ ≤   

about the x-axis. 
 

   Ans: 22
2
π

π −   

 
 
 
 
 
Summary Formula for Area of Revolution: 
 

Type of 
Equation 

Revolve about x-axis Revolve about y-axis 

Parametric 
( ),
( )

x f t
y g t
=

=
    

( )y f x=
    

 

( )x g y=
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Polar form 

( )r f θ=
  

2
22 sin

b

x
a

drS r r d
d

π θ θ
θ

⎛ ⎞= +∫ ⎜ ⎟
⎝ ⎠

 
2

22 cos
b

y
a

drS r r d
d

π θ θ
θ

⎛ ⎞= +∫ ⎜ ⎟
⎝ ⎠

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix: 
 

1. Partial fraction decomposition. 
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2. Integrations involving 2Ax Bx C+ +   
Expression Substitution 

2 2x k+  tanx k θ=  or sinhx k θ=  
2 2x k−  secx k θ=  or coshx k θ=  
2 2k x−  sinx k θ=  or tanhx k θ=  

 


