Chapter 6: Multivariable Functions

- 6.0 Review: Graph of Functions
- 6.1 Functions of Two Variables
 - Domain and Range
- 6.2 3D Cartesian Coordinate System
- 6.3 Graphs in 3D System
 - Some Common Surfaces
 - Sketching Common Surfaces
 - Level Curves/Contour lines
- 6.4 Functions of Three Variables
 - Domain and Range
 - Level Surfaces

6.0 Review: Graph of Functions

You may know these functions and how does it looks like? $y = \sin x$ $y = \ln x$ $v = x^2$ $v = -\sqrt{x}$ $y = \sqrt{x}$ $v = x^3$ y = v = 3 $v = e^{x}$ v = 2x + 1v = x $v^2 + x^2 = a^2$; *a* is constant $v = \sqrt{a^2 - x^2} \qquad v = -\sqrt{a^2 - x^2}$ $x = \sqrt{a^2 - y^2}$ $x = -\sqrt{a^2 - y^2}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; a < b? a > b?$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$

6.1 Functions of Two Variables

z = f(x, y)

The function *f* is called a **real-valued function of two variables** or simply function of two variables.

We refer to x and y as the **independent variables** and z as the **dependent variable**.

• Domain and Range

 $(x, y) \in$ Domain

 $z \in \mathbf{Range}$

Domain (D) : the set of all possible inputs (x, y) of the functions f(x, y).

Range (R) : the set of outputs *Z* that result when (x, y) varies over the domain D.

1.1.5 Domain and Range of z = f(x, y)

Domain :
$$\{(x, y) | x \in \mathbb{R}, y \in \mathbb{R}, \underline{???}\}$$

 \uparrow
any constraint

??? f(x, y) may consist:

*Sometimes we need to sketch the domain of the function given.

Range – z-values that results when (x,y) varies over the domain

- (i) z positive ?
- (ii) z negative ?
- (iii) z zero?
- (iv) z has maximum value ?
- (v) z has minimum value ?

Range : $\{z \mid z \in \mathbb{R}, \underline{???}\}$

put the limitation of z here!!

Example

Describe the domain and the range of $z = \sqrt{64 - 4x^2 - y^2}$.

Solution

Domain: $\{(x,y) \mid x \in \mathbb{R}, y \in \mathbb{R}, Gu - ux, y^{2} = 0\}$ or Jomain: $\{(x,y) \mid x \in \mathbb{R}, y \in \mathbb{R}, \frac{x}{16} + \frac{y}{16} \leq 1\}$ Ronge: $\{z \mid z \in \mathbb{R}, 0 \leq z \leq 5 \leq 164\}$ ov Ronge: $\{z \mid z \in \mathbb{R}, 0 \leq z \leq 8\}$

Find the domain and range of $z = x^2 \sqrt{y-1}$. Solution Construint : 430 Domain : [(x.y) x EIR, Y EIR, 4201 Ronge : xJy > 0 (always tve) 23-1 => Ronge : {2 | 2 EIR, 2 3 - 1 3 Sketching of domain

Find the domain and the range of $z = \ln(x^2 - y)$. Solution

Example Find the domain and the range of $z = 4 - x^2 - y^2$.

Solution

Domain : $\{(x, y) | x \in \mathbb{R}, y \in \mathbb{R}\}$

Range : $\{z \mid z \in \mathbb{R}, z \le 4\}$

Let f(x,y) = 1 - x + y. (a) Evaluate f(-1, 2), f(0, -3) and f(r, s). (b) Describe the domain and the range of f.

Solution

(a) By substitution,

$$f(-1,2) = 1 - (-1) + 2 = 4$$

 $f(0,-3) = 1 - 0 + (-3) = -2$
 $f(r,s) = 1 - r + s$

(b) The *domain* is a set of all ordered pairs (x, y) for which 1- x + y is defined. There is no restriction on the independent variables. This means we can have all real values of x and y as inputs. Thus the domain of f consists of all points in the entire xy-plane. This normally can be written as

$$D_f = \{(x, y) | x, y \in \mathbb{R}\}$$

The *range* which is the set of outputs, is all single real numbers, that is

$$R_f: \{z \mid z \in \mathbb{R}\} \text{ or } R_f: (-\infty, \infty)$$

Let. $f(x, y) = 3x^2 \sqrt{y} - 1$.

i. Describe and sketch the domain.

ii. Determine the range.

Solution

(i) The domain is a set of all ordered pairs (x, y) for which $3x^2\sqrt{y} - 1$ is defined. We must have the restriction $y \ge 0$ in order for the square root to be defined. Thus the domain of *f* consists of all points in the *xy*-plane that are on or above the *x*-axis. This can be written as

$$D_f = \{(x, y) | y \ge 0\}$$

The graph of the domain:

(ii) The range is all real numbers greater than or equal to −1, that is

$$R_f : \{z | z \ge -1\}$$
 or $R_f : [-1, \infty)$

6.3 Graphs in 3D System

The graph of the function f of two variables is the set of all points (x, y, z) in three-dimensional space, where the values of (x, y) lie in the domain of f and z = f(x, y).

Note:

- → y = f(x), the graph is a curve in the xy-plane
 \mathbb{R}^2 consisting of all ordered pairs (x,y)
- ➤ z = f(x,y), the graph is a surface in \mathbb{R}^3 consisting of (x,y,z) for (x, y) in the domain of f
- → w = f(x,y,z), the graph is 3-dimensional inside \mathbb{R}^4

Some Common Surfaces

The graph of an equation in \mathbb{R}^3 is called a **surface**. Four types of surface in space:

Planes

Std equation: ax + by + cz = d

Spheres

Std equation:

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$$

Cylinders

parabolic, circular, hyperbolic and elliptic

Quadric Surfaces

3-D analogs of conic sections

Std equation:

$$Ax^{2}+By^{2}+Cz^{2}+Dxy+Exz+Fyz+Gx$$
$$+Hy+Iz=J$$

• 6 types of quadric surfaces:

For simplicity, we only gave the equation for the quadric surfaces that are centred on the origin.

• Ellipsoid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

• hyperboloid of one sheet:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

• hyperboloid of two sheets:

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

• elliptic cone:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

• elliptic paraboloid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

• hyperbolic paraboloid:

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z}{c}$$

Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces in the coordinate planes and planes parallel to these are ellipses. If $a = b = c$, the ellipsoid is a sphere.	
Elliptic Paraboloid:	
$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ The trace in the <i>xy</i> -plane is a point (the origin), and the traces in planes parallel to and above the <i>xy</i> -plane are ellipses. The traces in the <i>yz</i> - and <i>xz</i> -planes are parabolas.	
Hyperbolic Paraboloid (saddle surface): $\frac{z}{c} = \frac{y^2}{b^2} - \frac{x^2}{a^2}$ The trace in the <i>xy</i> -plane is a pair of lines intersecting at the origin. The traces in planes parallel to these are hyperbolas. The traces in the <i>yz</i> - and <i>xz</i> - planes are parabolas, as are the traces in planes parallel to these.	

Elliptic cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	
The trace in the xy -plane is a	
point (the origin), and the traces	
in planes parallel to these are	
ellipses. The traces in the <i>yz</i> -	
and <i>xz</i> -planes are pairs of lines	
intersecting at the origin. The	
traces in planes parallel to these	
are hyperbolas.	
Hyperboloid of One Sheet:	
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	
The trace in the <i>xy</i> -plane and planes	
parallel to these are ellipses. The	
traces in the <i>yz</i> -plane and <i>xz</i> -plane are	
hyperbolas. The axis symmetry	
coefficient is negative	
Hyperboloid of Two Sheets	
$r_2^2 = v_2^2 = v_2^2$	
$\frac{z}{c^2} - \frac{x}{a^2} - \frac{y}{b^2} = 1$	
There is no trace in the <i>xy</i> -	
plane. In planes parallel to the	
<i>xy</i> -plane the traces are ellipses.	
In the <i>yz</i> - and <i>xz</i> -planes, the	
traces are hyperbolas.	

Sketching Common Surfaces

The following ways can be use to sketch the surface z = f(x,y) in 3-space:

Step 1: Determine the variables (domain and range – defined the surface).

Step 2: Sketch the traces - curves of intersection in coordinate planes and sometimes in parallel planes (based on the variables exist) or using algebraic manipulation to identify the standard equation of the function.

Step 3: Make the projection onto the traceplane which is parallel to the variables that not exist.

Example 3 (Planes-one variable)

Sketch the following equation:

(a) x = 0, x = 3. (b) y = 0, y = -1(c) z = 0, z = 5.

Example 4 (Planes-two variables)

Sketch the following equation:

(a)
$$y = -x + 6$$
.

(b)
$$2y = 4z + 5$$
.

(c)
$$z + x = 4$$
.

Example 5 (Tetrahedron-3 variables)

Sketch the following equation:

(a)
$$x + y + z = 1$$
.

(b)
$$z = 6 - 3y + 2x$$
.

Example 6 (Curved Surface)

(a)
$$y = x^{2}$$
.
(b) $x^{2} + y^{2} = 25$.
(c) $y^{2} - z^{2} = 9$.

Example 7 (Curved Surface)

(a)
$$z = x^{2} + y^{2}$$
.
(b) $z = \sqrt{x^{2} + y^{2}}$.
(c) $\frac{x^{2}}{9} + \frac{y^{2}}{4} - z^{2} = 1$.

• Level Curves / Contour Lines

When the plane z = c intersects the surface z = f(x, y), the result is the space curve with the equation f(x, y) = c.

- The intersection curve is called the **trace** of the graph f in the plane z = c.
- The projection of this curve on the *xy*-plane is called a **level curve**.
- A collection of such curves is a contour map/plot.

Relationship Between Graphs of Surfaces and Level Curves

Definition

The level curves of a function f of two variables are the curves with equations f(x,y) = c, where c is a constant (in the range of f). A set of level curves for z = f(x,y) is called a contour plot of f.

Sketch the contour lines/level curves and the graphs

(i) $z = x^2 + y^2$, c = 0, 1, 2, 3, 4, 9

(ii)
$$z = \sqrt{x^2 + y^2}$$
, $c = 0, 1, 4, 9$

(iii)
$$z = 6 - x^2 - y, c = 0, 2, 4, 6$$

Solution

(i)
$$z = x^2 + y^2$$
, $c = 0, 1, 2, 3, 4, 9$

Sketching the level curves

- first, replace z with the value of c

- second, plot the graph on the xy-plane

The traces in the coordinate planes:

- *yz*-plane, x = 0: the quadratic curve, $z = y^2$
- *xz*-plane, y = 0: the quadratic curve, $z = x^2$

• *xy*-plane,
$$z = 0$$
: a point (the origin)

(ii)
$$z = \sqrt{x^2 + y^2}$$
, $c = 0, 1, 4, 9$

c = 0	$:\sqrt{x^2+y^2}=0$	level curves
<i>c</i> =1	$: \sqrt{x^2 + y^2} = 1$	in xy-plone
<i>c</i> =4	$: \sqrt{x^2 + y^2} = 4$	×
<i>c</i> =9	$: \sqrt{x^2 + y^2} = 9$	

The traces in the coordinate planes:

- *yz*-plane, x = 0: the straight line, z = y
- *xz*-plane, y = 0: the straight line, z = x
- *xy*-plane, z = 0: a point (the origin)
- parallel to *xy*-plane, z = 4: the circle $x^2 + y^2 = 4^2$

eg.
$$Z = \int x^2 + y^2$$

the graph of
the E^2 given
(surface) and
(surface) and
 $I = \int x^2 + y^2$
 $Z = \int x^2 + y^2$
 $Z = 1$
 $Z = 1$

(ii) $z = 6 - x^2 - y$, c = 0, 2, 4, 6.

Sketching the level curves

- first, replace z with the value of c
- second, plot the graph on the xy-plane

c = 0	$: 6 - x^2 - y = 0 \Longrightarrow y = -x^2 + 6$
<i>c</i> =2	$: 6 - x^2 - y = 2 \Longrightarrow y = -x^2 + 4$
<i>c</i> =4	$: 6 - x^2 - y = 4 \Longrightarrow y = -x^2 + 2$
<i>c</i> =6	$: 6 - x^2 - y = 6 \Longrightarrow y = -x^2$

Find the domain and range of the following functions; also sketch the level curves for some values of z = c, xz-trace and yz-trace; and hence sketch the surface z = f(x, y). (a) $f(x, y) = 9 - x^2 - y^2$; c = 0, 3, 6, 8. (b) $z = x^2 + y^2 - 4x + 6y + 13$; c = 1, 4, 9.

6.4 Functions of 3 Variables

Basic ideas of functions of two variables can be extended to the study of functions of three variables.

- (a) The graph of a one variable function is 2space, a two variables function is in 3-space thus we expect a three variable function will be in 4-space.
- (b) It is difficult to visualise graphs in 4-space. However, we can draw the level surfaces of the graph to ascertain the properties and behaviour of three variables functions.

Domain and Range

A function *f* of three variables is a rule that assigns to each ordered triple (x, y, z) in some domain *D* in space a unique real number w = f(x, y, z). The range consists of the output values for *w*.

Example 9

Let
$$f(x,y,z) = x^2 + y^2 + z^2$$
.
i. Evaluate $f(1, 2, 1)$, $f(1, 0, 1)$, $f(-3, 2, 1)$.

ii. Determine the domain and range.

Solution

i. By substitution, $f(1, 2, 1) = 1^{2} + 2^{2} + 1^{2} = 6$ $f(1, 0, 1) = 1^{2} + 0^{2} + 1^{2} = 2$ $f(-3, 2, 1) = (-3)^{2} + 2^{2} + 1^{2} = 14$

ii. The domain is a set of all ordered triplets (x, y, z) for which $x^2 + y^2 + z^2$ is defined. $x^2 + y^2 + z^2 \ge 0$ for all points in space. Thus the domain is the entire 3-space.

Domain : $\{(x, y, z) | x, y, z \in \mathbb{R}\}$ Range: $0 \le f(x, y, z) < \infty$

Level Surfaces

The graphs of functions of three variables consist of points (x, y, z, f(x, y, z)) lying in fourdimensional space.

- (a) Graphs cannot be sketch effectively in three-dimensional frame of reference.
- (b) Can obtain insight of how function behaves by looking at its three-dimensional level surfaces.

Level surfaces are the three dimensional analog of level curves. If f(x, y, z) is a function of three variables and *c* is a constant then f(x,y,z) = c is a surface in 3-space. It is called a contour surface or a level surface.

Example 10

Describe the level surfaces of the following function:

(a)
$$f(x,y,z) = x^2 + y^2 + z^2$$
; $c = 0, c < 0, c > 0$.

(b)
$$f(x,y,z) = z^2 - x^2 - y^2$$
; $c = 0, c < 0, c > 0$.

(c)
$$f(x,y,z) = x^2 + y^2$$
; $c = 4, 9$.

(d) $f(x,y,z) = 4x^2 + y^2 + 4z^2$; c = 1, 4.