Chapter 6: Multivariable Functions
6.0 Review: Graph of Functions
6.1 Functions of Two Variables

- Domain and Range
6.2 3D Cartesian Coordinate

System
6.3 Graphs in 3D System

- Some Common Surfaces
- Sketching Common Surfaces
- Level Curves/Contour lines
6.4 Functions of Three Variables
- Domain and Range
- Level Surfaces

6.0 Review: Graph of Functions

You may know these functions and how does it looks like?

$$
\begin{array}{lll}
y=\sin x & y=\ln x & y=x^{2} \\
y=x^{3} & y=\sqrt{x} & y=-\sqrt{x} \\
y=\frac{1}{x} & y=e^{x} & y=3 \\
y=x & y=2 x+1 & \\
y^{2}+x^{2}=a^{2} ; a \text { is constant } & \\
y=\sqrt{a^{2}-x^{2}} & y=-\sqrt{a^{2}-x^{2}} & \\
x=\sqrt{a^{2}-y^{2}} & x=-\sqrt{a^{2}-y^{2}} \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; a<b ? a>b ? & \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 & \frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1
\end{array}
$$

You may know these.....
GRAPH OF FUNCTIONS

$$
\begin{aligned}
& y=\sqrt{a^{2}-y^{2}} \\
& \text { reciprocal: }
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}+x^{2}=a^{2} \text {-a } \\
& y=\sqrt{a^{2}-x^{2}} \\
& y=-\sqrt{a^{2}-x^{2}} \\
& x=\sqrt{a^{2}-y^{2}} \\
& x=\sqrt{a^{2}-y^{2}} \quad,
\end{aligned}
$$

$y=\frac{1}{x} \uparrow$
$y=e^{x}+$
$y=x$
parabola:

$$
y=2 x+1 \not /
$$

$$
\begin{aligned}
& x=y^{2} \\
& y=\sqrt{x} \\
& y=\sqrt{x}
\end{aligned}
$$

Ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

6.1 Functions of Two Variables

$$
z=f(x, y)
$$

The function f is called a real-valued function of two variables or simply function of two variables.

We refer to x and y as the independent variables and z as the dependent variable.

- Domain and Range

$$
\begin{gathered}
(x, y) \in \text { Domain } \\
z \in \text { Range }
\end{gathered}
$$

Domain (D) : the set of all possible inputs (x, y) of the functions $f(x, y)$.

Range (\mathbf{R}) : the set of outputs z that result when (x, y) varies over the domain D .

1.1.5 Domain and Range of

 $z=f(x, y)$Domain : $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, \underline{? ? ?\}}$
any constraint

??? $f(x, y)$ may consist:

Sometimes we need to sketch the domain of the function given.

Range - z-values that results when (x, y) varies over the domain
(i) z positive ?
(ii) z negative ?
(iii) z zero ?
(iv) z has maximum value ?
(v) z has minimum value?

Range $:\{z \mid z \in \mathbb{R}$, ??? $\}$
put the limitation of z here!!

Example

Describe the domain and the range of $z=\sqrt{64-4 x^{2}-y^{2}}$.

Solution
The sketching of Domain

Domain : $\left\{(x, y) / x \in \mathbb{R}, y \in R, \quad 64-4 x^{2}-y^{\prime} ; 0\right\}$
or
Domain: $\left\{(x, y) \mid x \in \mathbb{R}, y \in R, \frac{x^{2}}{16}+\frac{y^{\circ}}{64} \leq 1\right\}$
Range: $\{z / z \in \mathbb{R}, O \subseteq z \subseteq \sqrt{64}\}$
Range: $\{z \mid z \in \mathbb{R}, O \in z \in 8\}$

Example
Find the domain and range of $z=x^{2} \sqrt{y}-1$.
Solution
Constraint : $y \geqslant 0$
Domain : $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}$,
Range: ? $y \geqslant 0\}$

$$
\begin{aligned}
& \quad x^{2} \sqrt{y} \geqslant 0 \quad \text { (always tue) } \\
& \therefore \quad z \geqslant-1 \\
& \Rightarrow \text { Range }:\{z \mid z \in \mathbb{R}, \quad z \geqslant-1\}
\end{aligned}
$$

Sketching of domain

Example
Find the domain and the range of $z=\ln \left(x^{2}-y\right)$.
Solution

$$
\left.\begin{array}{l}
\text { Constraint : } x^{2}-y>0 \Rightarrow y<x^{2} \\
\therefore \text { Domain: }\left\{(x, y) \mid x \in R, y \in R, y<x^{2}\right\} \\
\text { sketching }
\end{array}\right\}
$$

Example

Find the domain and the range of
$z=4-x^{2}-y^{2}$.

Solution

Domain : $\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$

Range : $\{z \mid z \in \mathbb{R}, z \leq 4\}$

Example 1

Let $f(x, y)=1-x+y$.
(a) Evaluate $f(-1,2), f(0,-3)$ and $f(r, s)$.
(b) Describe the domain and the range of f.

Solution

(a) By substitution,
$f(-1,2)=1-(-1)+2=4$
$f(0,-3)=1-0+(-3)=-2$
$f(r, s)=1-r+s$
(b) The domain is a set of all ordered pairs (x, y) for which $1-x+y$ is defined. There is no restriction on the independent variables. This means we can have all real values of x and y as inputs. Thus the domain of f consists of all points in the entire $x y$-plane. This normally can be written as

$$
D_{f}=\{(x, y) \mid x, y \in \mathbb{R}\}
$$

The range which is the set of outputs, is all single real numbers, that is

$$
R_{f}:\{z \mid z \in \mathbb{R}\} \text { or } R_{f}:(-\infty, \infty)
$$

Example 2

Let. $f(x, y)=3 x^{2} \sqrt{y}-1$.
i. Describe and sketch the domain.
ii. Determine the range.

Solution

(i) The domain is a set of all ordered pairs (x, y) for which $3 x^{2} \sqrt{y}-1$ is defined. We must have the restriction $y \geq 0$ in order for the square root to be defined. Thus the domain of f consists of all points in the $x y$-plane that are on or above the x-axis. This can be written as

$$
D_{f}=\{(x, y) \mid y \geq 0\}
$$

The graph of the domain:

(ii) The range is all real numbers greater than or equal to -1 , that is

$$
R_{f}:\{z \mid z \geq-1\} \text { or } R_{f}:[-1, \infty)
$$

6.2 3D Cartesian Coordinate System

6.3 Graphs in 3D System

The graph of the function \boldsymbol{f} of two variables is the set of all points (x, y, z) in three-dimensional space, where the values of (x, y) lie in the domain of f and $z=f(x, y)$.

Note:
$>y=f(x)$, the graph is a curve in the $x y$-plane \mathbb{R}^{2} consisting of all ordered pairs (x, y)
$>z=f(x, y)$, the graph is a surface in \mathbb{R}^{3} consisting of (x, y, z) for (x, y) in the domain of f
$>w=f(x, y, z)$, the graph is 3-dimensional inside \mathbb{R}^{4}

- Some Common Surfaces

The graph of an equation in \mathbb{R}^{3} is called a surface. Four types of surface in space:

- Planes

Std equation: $a x+b y+c z=d$

- Spheres

Std equation:

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}
$$

- Cylinders

 parabolic, circular, hyperbolic and elliptic- Quadric Surfaces

3-D analogs of conic sections
Std equation:

$$
\begin{gathered}
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x \\
+H y+I z=J
\end{gathered}
$$

- 6 types of quadric surfaces:

For simplicity, we only gave the equation for the quadric surfaces that are centred on the origin.

- Ellipsoid:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

- hyperboloid of one sheet:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

- hyperboloid of two sheets:

$$
\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

- elliptic cone:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

elliptic paraboloid:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

- hyperbolic paraboloid:

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z}{c}
$$

Ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
All traces in the coordinate planes and planes parallel to these are ellipses. If $a=b=c$, the ellipsoid is a sphere.
Elliptic Paraboloid:

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

The trace in the $x y$-plane is a point (the origin), and the traces in planes parallel to and above the $x y$-plane are ellipses. The traces in the $y z$ - and $x z$-planes are parabolas.
Hyperbolic Paraboloid (saddle surface): $\frac{z}{c}=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$
The trace in the $x y$-plane is a pair of lines intersecting at the origin. The traces in planes parallel to these are hyperbolas.
The traces in the $y z$ - and $x z$ planes are parabolas, as are the traces in planes parallel to these.

Elliptic cone: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
The trace in the $x y$-plane is a point (the origin), and the traces in planes parallel to these are ellipses. The traces in the $y z$ and $x z$-planes are pairs of lines intersecting at the origin. The traces in planes parallel to these are hyperbolas.
Hyperboloid of One Sheet:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

The trace in the $x y$-plane and planes parallel to these are ellipses. The traces in the $y z$-plane and $x z$-plane are hyperbolas. The axis symmetry corresponds to the variable whose coefficient is negative.
Hyperboloid of Two Sheets:
$\frac{z^{2}}{c^{2}}-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
There is no trace in the $x y$ plane. In planes parallel to the $x y$-plane the traces are ellipses. In the $y z$-and $x z$-planes, the traces are hyperbolas.

- Sketching Common Surfaces

The following ways can be use to sketch the surface $z=f(x, y)$ in 3 -space:
Step 1: Determine the variables (domain and range - defined the surface).
Step 2: Sketch the traces - curves of intersection in coordinate planes and sometimes in parallel planes (based on the variables exist) or using algebraic manipulation to identify the standard equation of the function.
Step 3: Make the projection onto the traceplane which is parallel to the variables that not exist.

Example 3 (Planes-one variable)

Sketch the following equation:
(a) $x=0, x=3$.
(b) $y=0, y=-1$
(c) $z=0, z=5$.

Example 4 (Planes-two variables)
Sketch the following equation:
(a) $y=-x+6$.
(b) $2 y=4 z+5$.
(c) $z+x=4$.

Example 5 (Tetrahedron-3 variables)
Sketch the following equation:
(a) $x+y+z=1$.
(b) $z=6-3 y+2 x$.

Example 6 (Curved Surface)

(a) $y=x^{2}$.
(b) $x^{2}+y^{2}=25$.
(c) $y^{2}-z^{2}=9$.

Example 7 (Curved Surface)
(a) $z=x^{2}+y^{2}$.
(b) $z=\sqrt{x^{2}+y^{2}}$.
(c) $\frac{x^{2}}{9}+\frac{y^{2}}{4}-z^{2}=1$.

- Level Curves / Contour Lines

When the plane $z=c$ intersects the surface $z=f(x, y)$, the result is the space curve with the equation $f(x, y)=c$.

- The intersection curve is called the trace of the graph f in the plane $z=c$.
- The projection of this curve on the $x y$-plane is called a level curve.
- A collection of such curves is a contour map/plot.

E9: consour map

\& mountain

Relationship Between Graphs of Surfaces and Level Curves

Contour plot

Definition

The level curves of a function f of two variables are the curves with equations $f(x, y)=c$, where c is a constant (in the range of f). A set of level curves for $z=f(x, y)$ is called a contour plot of f.

Example

Sketch the contour lines/level curves and the graphs
(i) $z=x^{2}+y^{2}, c=0,1,2,3,4,9$
(ii) $z=\sqrt{x^{2}+y^{2}}, c=0,1,4,9$
(iii) $z=6-x^{2}-y, c=0,2,4,6$

Solution

(i) $z=x^{2}+y^{2}, c=0,1,2,3,4,9$

Sketching the level curves

- first, replace z with the value of c
- second, plot the graph on the xy-plane $c=0 \quad: x^{2}+y^{2}=0$
$c=1 \quad: x^{2}+y^{2}=1$
$c=2 \quad: x^{2}+y^{2}=2$
$c=3 \quad: x^{2}+y^{2}=3$
$c=4 \quad: x^{2}+y^{2}=4$
$c=9 \quad: x^{2}+y^{2}=9$

The traces in the coordinate planes:

- $y z$-plane, $x=0$: the quadratic curve,

$$
z=y^{2}
$$

- $x z$-plane, $y=0:$ the quadratic curve,

$$
z=x^{2}
$$

- $x y$-plane, $z=0$: a point (the origin)

(ii) $z=\sqrt{x^{2}+y^{2}}, c=0,1,4,9$.

$c=0$	$: \sqrt{x^{2}+y^{2}}=0$
$c=1$	$: \sqrt{x^{2}+y^{2}}=1$
$c=4$	$: \sqrt{x^{2}+y^{2}}=4$
$c=9$	$: \sqrt{x^{2}+y^{2}}=9$

The traces in the coordinate planes:

- yz-plane, $x=0$: the straight line, $z=y$
- $x z$-plane, $y=0$: the straight line, $z=x$
- $x y$-plane, $z=0:$ a point (the origin)
- parallel to $x y$-plane, $z=4$: the circle $x^{2}+y^{2}=4^{2}$

$$
\begin{aligned}
& c=1: 1=\sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}=1 \\
& c=4: 4=\sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}=16 \\
& c-9: 9=\sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}=81
\end{aligned}
$$

(ii) $z=6-x^{2}-y, c=0,2,4,6$.

Sketching the level curves

- first, replace z with the value of c
- second, plot the graph on the xy-plane

$$
\begin{array}{ll}
c=0 & : 6-x^{2}-y=0 \Rightarrow y=-x^{2}+6 \\
c=2 & : 6-x^{2}-y=2 \Rightarrow y=-x^{2}+4 \\
c=4 & : 6-x^{2}-y=4 \Rightarrow y=-x^{2}+2 \\
c=6 & : 6-x^{2}-y=6 \Rightarrow y=-x^{2}
\end{array}
$$

Example 8

Find the domain and range of the following functions; also sketch the level curves for some values of $z=c, x z$-trace and $y z$-trace; and hence sketch the surface $z=f(x, y)$.
(a) $f(x, y)=9-x^{2}-y^{2} ; c=0,3,6,8$.
(b) $z=x^{2}+y^{2}-4 x+6 y+13 ; c=1,4,9$.

6.4 Functions of 3 Variables

Basic ideas of functions of two variables can be extended to the study of functions of three variables.
(a) The graph of a one variable function is 2space, a two variables function is in 3 -space thus we expect a three variable function will be in 4 -space.
(b) It is difficult to visualise graphs in 4-space. However, we can draw the level surfaces of the graph to ascertain the properties and behaviour of three variables functions.

- Domain and Range

A function \boldsymbol{f} of three variables is a rule that assigns to each ordered triple (x, y, z) in some domain D in space a unique real number $w=f(x, y, z)$. The range consists of the output values for w.

Example 9

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
i. Evaluate $f(1,2,1), f(1,0,1), f(-3,2,1)$.
ii. Determine the domain and range.

Solution

i. By substitution,

$$
\begin{aligned}
& f(1,2,1)=1^{2}+2^{2}+1^{2}=6 \\
& f(1,0,1)=1^{2}+0^{2}+1^{2}=2 \\
& f(-3,2,1)=(-3)^{2}+2^{2}+1^{2}=14
\end{aligned}
$$

ii. The domain is a set of all ordered triplets (x, y, z) for which $x^{2}+y^{2}+z^{2}$ is defined.
$x^{2}+y^{2}+z^{2} \geq 0$ for all points in space. Thus the domain is the entire 3 -space.

Domain : $\{(x, y, z) x, y, z \in \mathbb{R})$
Range: $0 \leq f(x, y, z)<\infty$

- Level Surfaces

The graphs of functions of three variables consist of points ($x, y, z, f(x, y, z)$) lying in fourdimensional space.
(a) Graphs cannot be sketch effectively in three-dimensional frame of reference.
(b) Can obtain insight of how function behaves by looking at its three-dimensional level surfaces.
Level surfaces are the three dimensional analog of level curves. If $f(x, y, z)$ is a function of three variables and c is a constant then $f(x, y, z)=c$ is a surface in 3 -space. It is called a contour surface or a level surface.

Example 10

Describe the level surfaces of the following function:
(a) $f(x, y, z)=x^{2}+y^{2}+z^{2} ; c=0, c<0, c>0$.
(b) $f(x, y, z)=z^{2}-x^{2}-y^{2} ; c=0, c<0, c>0$.
(c) $f(x, y, z)=x^{2}+y^{2} ; c=4,9$.
(d) $f(x, y, z)=4 x^{2}+y^{2}+4 z^{2} ; c=1,4$.

