### **Chapter 7: Limits and Continuity**

#### 7.1 Overview of Limits for Function of One Variable

- The definition of the limit of a function of two variables is similar to the definition of the limit of a function of a single variable, yet there is critical difference.
- For a function of a single variable to have a limit, we need only check the values for the left-hand and right-hand limits.
- We recall that, if

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x),$$

then  $\lim_{x\to a} f(x)$  exists, and vice versa.

• On the other hand, if

$$\lim_{x \to a^{-}} f(x) = L_{1} \neq \lim_{x \to a^{+}} f(x) = L_{2},$$

then  $\lim_{x\to a} f(x)$  does not exists, and vice versa.

For functions of two variables the situation is different.

# 7.2 Limits and Continuity for Functions of Two Variables

If  $(x, y) \rightarrow L$  as (x, y) approaches (a, b) along every possible path that approaches (a,b), then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L.$$

If  $f(x,y) \rightarrow L_1$  as (x,y) approaches (a,b) along path  $P_1$  but  $f(x,y) \rightarrow L_2$  as (x,y) approaches (a,b) along path  $P_2$ , so  $\lim_{(x,y)\to(a,b)} f(x,y)$  does not exist.

#### **Properties of Limits:**

<u>Linearity:</u>

• 
$$\lim_{(x,y)\to(x_0,y_0)} cf(x,y) = c \lim_{(x,y)\to(x_0,y_0)} f(x,y)$$

• 
$$\lim_{(x,y)\to(x_0,y_0)} cf(x,y) = c \lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
  
•  $\lim_{(x,y)\to(x_0,y_0)} (f+g)(x,y) = \lim_{(x,y)\to(x_0,y_0)} f(x,y) + \lim_{(x,y)\to(x_0,y_0)} g(x,y)$ 

#### Products of functions:

• 
$$\lim_{(x,y)\to(x_0,y_0)} (fg)(x,y) = \lim_{(x,y)\to(x_0,y_0)} f(x,y) \cdot \lim_{(x,y)\to(x_0,y_0)} g(x,y)$$

#### Quotients of functions:

• 
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{\lim_{(x,y)\to(x_0,y_0)} f(x,y)}{\lim_{(x,y)\to(x_0,y_0)} g(x,y)}$$

### Example 1: Evaluate

(a) 
$$\lim_{(x,y)\to(-1,0)} (xy^2 + x^3y + 5)$$
 Ans: 5

(b) 
$$\lim_{(x,y)\to(3,4)} \frac{x-y}{\sqrt{x^2+y^2}}$$
 Ans: -1/5

#### Example 2: Evaluate

(a) 
$$\lim_{(x,y)\to(1,2)} \frac{(x^2-1)(y^2-4)}{(x-1)(y-2)}$$
 Ans: 8  
(b)  $\lim_{(x,y)\to(0,0)} \frac{\sin(x+y)}{x+y}$  Ans: 1

# **Example 3:**

Determine whether or not

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^3 + y^3}$$

exists, by examining the paths along the *x*-axis, *y*-axis, and also  $y = x^2$ .

## **Definition** (Continuity)

A function f is continuous at a point (a,b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$$

If f continuous at every point (a,b) in a region  $\Re$ , then f is continuous on  $\Re$ .

#### **Example 4:** Show that

(a)  $f(x,y,z) = \ln(2x+y-z)$  is continuous at (2,0,-1).

(b) 
$$g(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

is discontinuous at (0,0).

#### **Example 5:** Show that

$$g(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous at (0,0).

# Example 6:

Extend the function  $f(x,y) = \ln\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right)$  to make it continuous at the origin.