CHAPTER 2: Infinite Series

- 2.1 Definition of Infinite Series
- 2.2 Telescoping and Geometric Series
- 2.3 The Integral Test
- 2.4 Divergence Test
- 2.5 Comparison Test
- 2.6 Root and Ratio Tests
- 2.7 Alternating Series Test
- 2.8 Absolute Convergence

2.1 Definition of Infinite Series

$$\{a_1, a_2, a_3, \cdots, a_n, a_{n+1}, \cdots\} \text{ - infinite sequence}$$

$$S_1 = a_1$$

$$S_2 = a_1 + a_2$$

$$S_3 = a_1 + a_2 + a_3$$

$$\vdots$$

$$S_k = a_1 + a_2 + a_3 + \cdots + a_k = \sum_{n=1}^k a_n$$
The sequence of partial sum, $\{S_k\} = \text{Infinite}$
series or for short series only.

If there is a real no. S such that
$$\lim_{k\to\infty} S_k = S$$
,
that is $\sum_{n=1}^{\infty} a_n = S$.
= the sum of
the series

Then we say that the series converges,

$$\sum_{n=1}^{\infty} a_n \text{ converges.}$$

$$\bigotimes_{k\to\infty} If \lim_{k\to\infty} S_k \text{ does not exist or } \lim_{k\to\infty} S_k = \pm\infty,$$
Then the series
$$\sum_{n=1}^{\infty} a_n \text{ diverges.}$$

2.2 Telescoping and Geometric Series

2.2.1 Telescoping Series

A series $\sum_{n=1}^{\infty} a_n$ is a telescoping series if there is a sequence $\{b_n\}$ such that

$$a_n = b_n - b_{n+1}$$
; $n = 1, 2, 3, \dots$

Then $\sum_{n=1}^{\infty} a_n = b_1 - \lim_{n \to \infty} b_n$. Hence the telescoping series converges if and only if the sequence $\{b_n\}$ converges.

Example

Show that the following series is a telescoping series. Hence, determine the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n \quad n+1}$$

(b) $\sum_{n=1}^{\infty} \ln\left(\frac{n+2}{n+3}\right)$

Example

$$\sum_{n=0}^{\infty} ar^{n} = a + ar + ar^{2} + ar^{3} + \dots ; \quad a \neq 0$$

Note: *a* is the first term.

The geometric series is convergent if |r| < 1 and its sum is $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$. If |r| > 1, then the

geometric series is divergent.

Example

(a) Find the sum of geometric series

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$$

(b) Is the series $\sum_{n=0}^\infty 2^{2n} 3^{1-n}$ convergent or

divergent?

2.3 The Integral Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with $a_n > 0, n = 1, 2, ...$ and f

be a function such that $f(n) = a_n$. f is

continuous and decreasing function for all real $x \ge 1$ and *L* is a real number.

(1) If
$$\int_{1}^{\infty} f(x) dx = L$$
 then $\sum_{n=1}^{\infty} a_n$ converges.
(2) If $\int_{1}^{\infty} f(x) dx = \infty$ then $\sum_{n=1}^{\infty} a_n$ diverges.

Notes: *This test cannot be used to calculate

sum. *Use this test when f(x) is easy to

integrate. *This test only applies to series that

have positive terms.

Example

Determine whether the following series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} rac{1}{4n+5}$$

(b) $\sum_{n=1}^{\infty} rac{1}{n^2}$

Note: The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called *p*-series. The *p*-series converges if p > 1 and diverges if 0 .

2.4 Divergence Test

If
$$\lim_{n\to\infty} a_n \neq 0$$
, then $\sum_{n=1}^{\infty} a_n$ diverges. If $\lim_{n\to\infty} a_n = 0$,
then $\sum_{n=1}^{\infty} a_n$ may be convergent or may be
divergent, hence other tests should be used.
Note: This test only determines the divergence
of a series.

Example

Show that the series diverges

(a)
$$\sum_{n=1}^{\infty} \frac{2n}{n+1}$$

(b) $\sum_{n=1}^{\infty} \cos n\pi$

(c)
$$\sum_{n=1}^{\infty} \frac{e^n}{n}$$

(d) $\sum_{n=1}^{\infty} \frac{n^{n+1/n}}{n+1/n}$

2.5 Comparison Test

Let
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ be series with nonnegative
terms such that
 $a_1 \leq b_1, a_2 \leq b_2, a_3 \leq b_3, \dots, a_n \leq b_n, \dots$
for all n . If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$
converges. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Notes:

*The series that we use for comparison are usually the geometric series or the p-series. *Use this test as a last resort; other tests are often easier to apply.

*This test only applies to series with nonnegative terms.

Example

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 - \cos^2 n}$$

(b) $\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^4 + 5}$

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series with positive terms

such that $c = \lim_{n \to \pm \infty} \frac{a_n}{b_n}$. If $0 < c < \infty$, then both

series converge or both diverge.

Note: This is easier to apply than the comparison test, but still requires some skill in

choosing the series $\sum_{n=1}^{\infty} b_n$ for comparison.

If c = 0 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $c = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Example

(a)
$$\sum_{n=0}^{\infty} \frac{1}{3^n - n}$$

(b) $\sum_{n=2}^{\infty} \frac{4n^2 + n}{\sqrt[3]{n^7 + n^3}}$

CHAPTER 2: Infinite Series

- 2.1 Definition of Infinite Series
- 2.2 Telescoping and Geometric Series
- 2.3 The Integral Test
- 2.4 Divergence Test
- 2.5 Comparison Test
- 2.6 Root and Ratio Tests
- 2.7 Alternating Series Test
- 2.8 Absolute Convergence

2.6 Root and Ratio Tests

2.6.1 Root Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms such that $R = \lim_{n \to \infty} \sqrt[n]{a_n}$.

- (a) Series converges if R < 1
- (b) Series diverges if R > 1 or $R = \infty$
- (c) No conclusion if R = 1 (Try another tests)

Note: Try this test when a_n involves nth powers.

Example

(a)
$$\sum_{n=1}^{\infty} \left(n^{1\!\!/n} - 1
ight)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^n}{3^{1+2n}}$$

(c) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$

2.6.2 Ratio Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms and

suppose
$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

- (d) Series converges if L < 1
- (e) Series diverges if L > 1 or $L = \infty$
- (f) No conclusion if L = 1 (Try another tests)

Note: Try this test when a_n involves factorials or nth powers.

Example

Determine whether each series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

(b) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$

2.7 Alternating Series Test

Alternating series is a series of the form

$$\sum_{n=1}^{\infty} \ -1 \sum_{n=1}^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

where $a_n > 0$ for all n = 1, 2, 3, ...

The series converge if

(a)
$$a_1 > a_2 > a_3 > a_4 > \dots$$

(b) $\lim_{n\to\infty} a_n = 0$

Note: This test applies only to alternating

series. It is assumed that $a_n > 0$ for all

 $n = 1, 2, 3, \dots$

Example

(a)
$$\sum_{n=1}^{\infty} rac{-1}{n}^{n+1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{-1^n n^2}{n^2 + 5}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{\sqrt{n}}$$

2.8 Absolute Convergence

Definition:

A series $\sum_{n=1}^{\infty} a_n$ is called absolutely convergence if the series $\sum_{n=1}^{\infty} |a_n|$ converges. A series $\sum_{n=1}^{\infty} a_n$ is called conditionally convergence if the series $\sum_{n=1}^{\infty} a_n$ converges, but the series $\sum_{n=1}^{\infty} |a_n|$ diverges.

Example

(a)
$$\sum_{n=1}^{\infty} -1^{n-1} \frac{1}{\sqrt{2n+3}}$$

(b) $\sum_{n=1}^{\infty} -1^n \frac{7}{n^3+1}$