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2.1 Definition of Infinite Series 
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          If there is a real no. S  such that lim k
k
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 , 

that is 
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The sequence of partial sum,  kS  = Infinite 

series or for short series only. 



Then we say that the series converges, 
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 converges. 

          If lim k
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 does not exist or lim k
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  , 

Then the series 
1

n
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 diverges.  

2.2 Telescoping and Geometric Series 

2.2.1 Telescoping Series 

A series 
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 is a telescoping series if there is a 

sequence  nb  such that 

1 ; 1,2,3,n n na b b n    

Then 1

1

limn n
n

n
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  . Hence the telescoping 

series converges if and only if the sequence 

 nb  converges. 



Example 

Show that the following series is a telescoping 

series. Hence, determine the series converges 

or diverges. 

(a)  
1
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1n n n
   

(b)  
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2
ln

3n
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n
  

Example 

Find the value of 
1

1

2n n n
. 

 

 

 

 



2.2.2 Geometric Series 
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Note: a is the first term.  

The geometric series is convergent if 1r   and 

its sum is 
0 1

n

n

a
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 . If 1r  , then the 

geometric series is divergent. 

Example 

(a) Find the sum of geometric series  

10 20 40
5

3 9 27
 

(b)  Is the series 2 1

0

2 3n n

n

convergent or 

divergent? 

 



2.3 The Integral Test 

Let 
1

n

n

a




  be a series with 0, 1,2,na n   and f 

be a function such that   nf n a . f  is 

continuous and decreasing function for all real 

1x   and L is a real number. 

(1) If  
1

f x dx L



  then  
1

n
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 converges. 

(2) If  
1

f x dx



   then 
1

n

n

a




 diverges. 

Notes: *This test cannot be used to calculate 

sum. *Use this test when  f x  is easy to 



integrate. *This test only applies to series that 

have positive terms. 

Example 

Determine whether the following series 

converges or diverges. 

(a)  
1

1

4 5n n
   

(b)  
2

1

1

n n
 

Note: The series 
1

1
p

n n
is called p-series. The 

p-series converges if 1p   and diverges if 
0 1.p   

 



2.4 Divergence Test 

If lim 0n
n

a


 , then 
1
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 diverges. If lim 0n
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 , 

then 
1
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  may be convergent or may be 

divergent, hence other tests should be used. 

Note: This test only determines the divergence 

of a series. 

Example 

Show that the series diverges 

(a)  
1
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(b)  
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2.5 Comparison Test 

Let 
1
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 and 
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 be series with nonnegative 

terms such that  

1 1 2 2 3 3, , , , ,n na b a b a b a b     

for all n. If 
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  converges, then 
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n
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a




  

converges. If 
1

n
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a




 diverges, then 
1

n

n

b




 diverges.  

 

 



Notes:  

*The series that we use for comparison are 

usually the geometric series or the p-series. 

*Use this test as a last resort; other tests are 

often easier to apply. 

*This test only applies to series with 

nonnegative terms. 

 

Example 

Determine whether each series converges or 

diverges. 

(a)  
2 2
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(b)  
2
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2.5.1 Limit Comparison Test 

Let 
1

n

n

a




 and 
1

n
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b




 be series with positive terms 

such that lim n

n
n

a
c

b
 . If 0 c , then both 

series converge or both diverge. 

Note: This is easier to apply than the 

comparison test, but still requires some skill in 

choosing the series 
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  for comparison. 

If 0c   and 
1

n
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 converges, then 

1

n
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a




 converges. If c  and 
1

n
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b




  diverges, 

then 
1

n
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  diverges.  

 



Example 

Determine whether each series converges or 

diverges. 

(a)  
0

1

3nn n
   

(b)  
3

2

7 32

4

n

n n

n n
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2.6 Root and Ratio Tests 

2.6.1 Root Test 

Let 
1

n

n

a




 be a series with positive terms such 

that lim .n
n

n
R a


  

(a) Series converges if 1R   

(b) Series diverges if 1R   or R   

(c) No conclusion if 1R  (Try another tests) 

Note: Try this test when na  involves nth powers. 

Example 

Determine whether each series converges or 

diverges. 

(a)  
1

1

1
n

n

n
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(b)  
1 2

1 3

n

n
n

n
  

(c)  
2

1 2
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2.6.2 Ratio Test 

Let 
1

n

n

a




 be a series with positive terms and 

suppose  1lim n

n
n

a
L

a




  

(d) Series converges if 1L   

(e) Series diverges if 1L   or L   

(f) No conclusion if 1L  (Try another tests) 

Note: Try this test when na  involves factorials 

or nth powers. 



Example 

Determine whether each series converges or 

diverges. 

(a)  
1

2

!

n

n n
   

(b)  
1

2 !n

n
n

n

n
  

 

2.7 Alternating Series Test 

Alternating series is a series of the form  

1 2 3 4

1
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a a a a a  

where 0na   for all 1,2,3,n   



The series converge if  

(a) 
1 2 3 4
a a a a  

(b)lim 0n
n
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Note: This test applies only to alternating 

series. It is assumed that 0na   for all 

1,2,3,n   

Example 

Determine whether each series converges or 

diverges. 

(a)  

1

1

1
n

n n
   



(b)  

2

2
1

1

5
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n
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(c)  
1
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n

n
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2.8 Absolute Convergence 

 

Definition: 

A series 
1

n

n

a




 is called absolutely convergence if 

the series 
1

n

n

a




  converges.  



A series 
1

n

n

a




 is called conditionally 

convergence if the series 
1

n

n
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  converges, but 

the series 
1

n

n

a




  diverges. 

Example 

Determine whether each series converges or 

diverges. 

(a)  
1

1

1
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2 3
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(b)  
3

1

7
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