## CHAPTER 3 : SERIES

### 3.1 Power Series

Definition
A power series about $x=0$ is a series of the form
$\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{n} x^{n}+\ldots$
A power series about $x=a$ is a series of the form
$\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\ldots+a_{n}(x-a)^{n}+\ldots$
in which the center $a$ and the coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ are constants.

Expansion of Exponent Function
The power series of the exponent function can be written as

$$
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots
$$

The expansion is true for all values of $x$. In general,

$$
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} .
$$

Example (1):
Given
$e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots+\frac{1}{n!} x^{n}+\ldots$
Write down the first five terms of the expansion of the following functions
(a) $e^{2 x}$
(b) $e^{x-1}$

Example (2):
Write down the first five terms on the expansion of the function, $(1+x)^{2} e^{-x}$ in the form of power series.

Expansion of Logarithmic Function
The expansion of logarithmic function can be written as

$$
\begin{aligned}
\ln (1+\mathrm{x})= & x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\frac{1}{5} x^{5} \\
& -\frac{1}{6} x^{6}+\frac{1}{7} x^{7}-\ldots
\end{aligned}
$$

The series converges for $-1<x \leq 1$. Thus the series $\ln (1+x)$ is valid for $-1<x \leq 1$.
By assuming $x$ with $-x$, we obtain

$$
\begin{aligned}
\ln (1-\mathrm{x})= & -x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\frac{1}{5} x^{5} \\
& -\frac{1}{6} x^{6}-\frac{1}{7} x^{7}-\ldots
\end{aligned}
$$

Thus, this result is true for $-1<-x \leq 1$ or $-1 \leq x<1$.

Example (3):
Write down the first five terms of the expansion of the following functions
(a) $\ln (1+3 x)$
(b) $3 \ln \left(1-2 x^{2}\right)(1+3 x)$

Example (4):
Find the first four terms of the expansion of the function, $(1+x)^{2} \ln (1+2 x)^{3}$.

Expansion of Trigonometric Function
The power series for trigonometric functions can be written as

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots
\end{aligned}
$$

Both series are valid for all values of $x$.

Example (5):
Given

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots
$$

Find the expansion of $\cos (2 x)$ and $\cos (3 x)$. Hence, by using an appropriate trigonometric identity find the first four terms of the expansion of the following functions:
(a) $\sin ^{2}(x)$
(b) $\cos ^{3}(x)$

### 3.2 The Taylor and the Maclaurin Series

## Definition 5.9 (TAYLOR AND MACLAURIN SERIES)

If $f(x)$ has a derivatives of all orders at $x=a$, then we call the series as Taylor's Series for $f(x)$ about $x=a$ and is given by

$$
f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots+\frac{(x-a)^{r}}{r!} f^{r}(a)+\cdots
$$

or

$$
f(x+a)=f(a)+x f^{\prime}(a)+\frac{x^{2}}{2!} f^{\prime \prime}(a)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots+\frac{x^{r}}{r!} f^{r}(a)+\cdots,
$$

In the special case where $a=0$, this series becomes the Maclaurin Series for $f(x)$ and is given by

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+\frac{x}{r!} f^{r}(0)+\cdots \Delta
$$

## Example (1):

Obtain the Taylor series for $f(x)=3 x^{2}-6 x+5$ around the point $x=1$.

Example (2):
Obtain Maclaurin series expansion for the first four terms of $e^{x}$ and five terms of $\sin x$. Hence, deduct that Maclaurin series for $e^{x} \sin x$ is given by

$$
x+x^{2}+\frac{1}{3} x^{3}-\frac{1}{30} x^{5}+\ldots
$$

Example (3):
Use Taylor's theorem to obtain a series expansion of first five terms for $\cos \left(x+\frac{\pi}{3}\right)$.
Hence find $\cos 62^{\circ}$ correct to 4 dcp .

Example (4):
If $y=\ln \cos x$, show that

$$
\frac{d^{2} y}{d x^{2}}+1+\left(\frac{d y}{d x}\right)^{2}=0
$$

Hence, by differentiating the above expression several times, obtain the Maclaurin's series of $y=\ln \cos x$ in the ascending power of $x$ up to the term containing $x^{4}$.

Finding Limits with Taylor Series and Maclaurin Series.

Example (5):
Find $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.

Example (6):
Evaluate $\lim _{x \rightarrow 0} \frac{x^{2}+2 \cos x-2}{3 x^{4}}$.

Evaluating Definite Integrals with Taylor Series and Maclaurin Series.
Example (7):
Use Maclaurin series to approximate the following definite integral.
(a) $\int_{0}^{1} e^{-x^{2}} d x$
(b) $\int_{0}^{1} x \cos \left(x^{3}\right) d x$

