SKKK1113 Principles of Chemical Processes 1 Section: 05

COURSE OUTLINE

Department of Renewable Energy Engineering Faculty of Petroleum & Renewable Energy Engineering Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

About Myself

Instructor	•	
Position/ Room No.	:	Senior Lecturer N01- 202 Department of Renewable Energy Engineering Faculty of Petroleum & Renewable Energy Engineering Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia Tel.: +(6)07-55 35516/35512
Email	:	hasrinah@petroleum.utm.my
Lectures	:	MONDAY 1100 - 1300 N29a (AMTEC) Seminar room WEDNESDAY 0900 - 1000 N03 1-3 WEDNESDAY 1100 - 1200 (T) N03 1-3
Course website	:	http://elearning.utm.my http://www.petroleum.utm.my/hasrinah/

Instructor

Outline of this Lecture

Synopsis of the Course

- This course introduces students to the chemical engineering profession and the fundamental operations of chemical process equipment.
- Providing students with the basic principles of chemical engineering material balances as well as calculation techniques to solve material balance problems for chemical process systems and equipment.
- Providing students with the basic principles of the First Law of thermodynamics and its applications.

Course Outcomes

CO1

Apply basis, unit conversion, process diagram for various chemical processes and process variables when solving problem

CO3

Construct the mass balance calculations on single or multiple process units with or without recycle, purge, or bypass streams for reactive processes

CO5

Justify mass balance calculations of multiple component gas-liquid systems at equilibrium

CO7

Conduct complex problem solving solution of mass and energy problem using principle of conservation

CO2

Calculate mass balance on single or multiple process units with or without recycle, purge, or bypass streams for nonreactive processes

CO4

Perform and **analyse** mass balance calculations of single phase system

CO6

Solve the problems using first law of thermodynamics and conservative equations by identifying forms of energy, reference state conditions and state properties

CO8

Commit in preparation of learning experience using E-Portfolio

Elementary Principles of Chemical Processes Third Edition Felder, R.M. and Rousseau, R.W.

References

Basic Principles and Calculations in Chemical Engineering Eighth Edition Himmelblau, D.M. and Riggs, J.B.

Topics to be Discussed

Main Text:

Introduction to Engineering Calculations	Chapter 02
Process and Process Variables	Chapter 03
Fundamentals of Material Balances	Chapter 04
Material Balances on Reactive Processes	Chapter 04
Single Phase Systems	Chapter 05
Multi-Phase Systems	Chapter 06
Energy Balance for Closed and Open Systems	Chapter 07

Teaching Methodology

- Content delivery through lectures
 - Lectures are given based on the active learning approach.
 - For each of the subtopics, at least one example of test or exam standard will be discussed to enhance students understanding on the subject matter.
- Tutorial
 - Students will be divided into groups.
 - Students are required to discuss and solve the questions given in their group
- Group project
- Independent study

Assessment

The breakdown for grading is as follows:

ų,	TOTAL	:	100%
	Final exam	:	50%
	Test 3	:	10%
ų,	Test 2	:	10%
ų,	Test 1	:	10%
	Projects	:	5%
	Life Long Learning (Developing E-Portfolio)	:	5%
	Critical Thinking and Problem Solving (CTPS),		
	Assignment and Quiz	:	10%

Tests

	Test 1
	✓ CO1 , CO2
	✓ 25/3/2015 : DK7 N24 8.00 – 10 pm
-	Test 2
	✓ CO1 , CO2, CO3
	✓ 29/4/2015 : DK7 N24 8.00 – 10 pm
-	Test 3
	✓ CO1 , CO4, CO5
	✓ 26/5/2015:DK7 N24 8.00 – 10 pm
-	Final exam
	✓ CO1 , CO2, CO3, CO4, CO5, CO6
	✓ AS SCREQUIED