Chapter 1

Introduction to Engineering Calculations

At the end of this course students will be able to
ϕ Convert one set of units in a function or equation into another equivalent set

2.1 Units and Dimensions

ϕ Dimension - property that can be measured such as \checkmark length
\checkmark time
\checkmark mass
\checkmark temperature
\checkmark multiplying or dividing other dimensions
ϕ Unit - measured and counted quantity has
\checkmark value (2.35)
\checkmark unit (2.35 gram)
ϕ It is essential to write the value and unit in equation
$\checkmark 2$ meters, 0.3 second, 4.5 kilograms, 5 gold rings

Properties of Units

ϕ Units can be treated like algebraic variables
\checkmark added and subtracted when having same units
but

$$
3 \mathrm{~cm}-1 \mathrm{~cm}=2 \mathrm{~cm} \quad(3 x-x=2 x)
$$

$$
3 \mathrm{~cm}-1 \mathrm{~mm}(\text { or } 1 \mathrm{~s})=? \quad(3 x-y=?)
$$

\checkmark can always be combined by multiplication or divisions $3 \mathrm{~N} \times 4 \mathrm{~m}=12 \mathrm{~N} . \mathrm{m}$
$\frac{5.0 \mathrm{~km}}{2.0 \mathrm{~h}}=2.5 \mathrm{~km} / \mathrm{h}$
$\frac{6 \mathrm{~cm}}{2 \mathrm{~cm}}=3$
(3 is a dimensionless quantity)
ϕ When having appropriate dimensions, measured quantity can be expressed in term of other units

$$
\mathrm{ft} / \mathrm{s} \square \mathrm{miles} / \mathrm{hr} \square \mathrm{~cm} / \mathrm{yr}
$$

* The equivalence between two expressions is given by ratio known as conversion factor
$\frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}$
$\frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}$$\quad$ (10 millimeters per 1 centimeter)

Method for using Conversion Factor
 Petroleum \& Perroleum \& Renewable Energ

Set up a dimensional equation
\diamond write the given quantity and its unit on the left
$>$ write the units of conversion factors (new unit/old unit)
$>$ fill in the values of the conversion factors
\diamond carry out the indicated arithmetic operations to find the desired values
\& Example: Convert acceleration of $1 \mathrm{~cm} / \mathrm{s}^{2}$ to $\mathrm{km} / \mathrm{y}^{2}$

* A given quantity is expressed into new unit by using a conversion factor (new unit/old unit)

$$
(36 \mathrm{mg}) \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}=0.036 \mathrm{~g}
$$

Alternative way to write this equation

Sem I (2013/14) PIONEERING TECHNOLOGY OF THE FUTURE

Conversion factor and units

Problems:

1) Change $400 \mathrm{in}^{3} /$ day to $\mathrm{cm}^{3} / \mathrm{min}$
2) If a plane travels at twice the speed of sound (assume the speed of sound is $1100 \mathrm{ft} / \mathrm{s}$), how fast is it going in miles per hour?

- Base Units - units for dimensions of mass, length, time, temperature, electrical current, and light intensity
\checkmark kilogram, meter, kelvin, ampere, candela
ϕ Multiple units - multiples or fraction of base unit
\checkmark minutes, hours, milliseconds or all in term of base unit second
\$ Derived units - obtained in one of two ways
\checkmark Multiplying and dividing base units ($\mathrm{cm}^{2}, \mathrm{ft} / \mathrm{min}, \mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$) which are known as compound units
\checkmark Defined as equivalents of compound units ($1 \mathrm{erg}=1 \mathrm{~g} . \mathrm{cm} / \mathrm{s}^{2}, 1 \mathrm{lb}=32.174 \mathrm{lb} . \mathrm{ft} / \mathrm{s}^{2}$)
System Internationale
d'Unites

Length

Mass

Moles
Time
Temperature
Electric cur
Light intensity candela (cd)

American engineering system

Length	foot (ft)
Mass	pound mass $\left(\mathrm{lb}_{m}\right)$
Moles	$\mathrm{lb}_{m}-$-mole $\left(\mathrm{lb}_{\mathrm{m}} \mathrm{mol}\right)$
Time	second (s)
Temperature	Rankin (R$)$
Electric current ampere (A$)$ Light intensity candela (cd)	

Pressure

ϕ Pressure is the ratio of a force to the area
\checkmark Units $\mathrm{N} / \mathrm{m}^{2}$, dynes $/ \mathrm{cm}^{2}$, and $\mathrm{Ib}_{\mathrm{f}} / \mathrm{in}^{2}$
\checkmark the SI pressure unit is $\mathrm{N} / \mathrm{m}^{2}$ or called pascal (Pa)

Temperature

Two most common temperature scales are defined using the freezing point (T_{f}) and boiling point (T_{b}) of water at 1 atm
\checkmark Celsius (or centigrade) scale

- T_{f} is assigned $0^{\circ} \mathrm{C}$ and T_{b} is $100^{\circ} \mathrm{C}$
- Absolute zero on this scale falls at $-273.15^{\circ} \mathrm{C}$

\checkmark Fahrenheit scale

- T_{f} is assigned $32^{\circ} \mathrm{F}$ and T_{b} is $212^{\circ} \mathrm{F}$
- Absolute zero on this scale falls at $-459.67{ }^{\circ} \mathrm{F}$
\checkmark The Kelvin and Rankin scale are defined at absolute value of Celsius and Fahrenheit

$$
\begin{aligned}
& T(K)=T\left({ }^{\circ} C\right)+273.15 \\
& T\left({ }^{(} \mathrm{R}\right)=\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)+459.67 \\
& \mathrm{~T}\left({ }^{\circ} \mathrm{R}\right)=1.8 \mathrm{~T}(\mathrm{~K}) \\
& \mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=1.8 \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32
\end{aligned}
$$

