

Mass, Volume and Density

 Example – Calculate the density of mercury in lb_m/ft³ from a tabulated specific gravity, and calculate the volume in ft³ occupied by 215 kg of mercury.

If dibromopentane (DBP) has a specific gravity of 1.57, what is the density in (a) g/cm³ (b) lb_m/ft³ and (c) kg/m³?

Sem I (2013/14)

PIONEERING TECHNOLOGY OF THE FUTURE

Sem I (2013/14)

PIONEERING TECHNOLOGY OF THE FUTURE

w

www.utm.my/petroleum

Faculty of

Petroleum &

Facultv of

Petroleum &

- Flow rate rate at which material is transported through process line
 - ♦ Mass flow rate (mass/time) kg/s or lb_m/s
 - Volumetric flow rate (volume/time) m³/s or ft³/s
- \Rightarrow The mass and volume is related by the fluid density (ρ)
- $\ensuremath{^{\oplus}}$ The density (ρ) of a fluid can be used to convert known volumetric flow rate to the mass flow rate and vice versa

- Atomic Weight the mass of atom on a scale that assign ¹²C a mass exactly 12.
- Molecular Weight -the sum of atomic weight of atoms that constitute a molecule
 - ♦ Atomic weight of Oxygen (O) = 16
 - ♦ Molecular Weight of molecular Oxygen (O₂) = 32
- + Gram-mole amount whose mass is equal to its molecular weight
 - ♦ units used gmol, lb_m-mole, kmol
 - If Molecular weight of a substance is M, then there are M kg/kmol, M g/mol and M lb_m/lb-mole of this substance
 - Carbon monoxide (CO) has a molecular weight of 28;
 - 1 mol of (CO) therefore contains 28 g
 - 1 lb_m-mole of (CO) contains 28 lb_m and
 - 1 kgmol of (CO) contains 28 kg

Sem I (2013/14)

aculty of Petroleum &

- \oplus Example : 34 kg of ammonia (NH₃): M = 17 are equivalent to
 - 4 lb-moles of ammonia are equivalent to
- \oplus One gram-mole of any species contains 6.02 x 10 ²³ (Avogadro's number) molecules of that species

PIONEERING TECHNOLOGY OF THE FUTURE

Conversion of mass flowrate to molar flow rate

- \oplus The molecular weight of a species can be used to relate the mass flow rate to corresponding molar flow rate
- \Rightarrow Example: If ammonia (NH₃): M = 17 flows through a pipeline at a rate of 100 kg/h the molar flowrate of the of are equivalent to

If the output stream of a reactor contains NH₃ flowing at a rate of 850 lb-moles/min, the corresponding flowrate is

PIONEERING TECHNOLOGY OF THE FUTURE

Mass and Mole Fractions

- + Process streams occasionally contain more than one substance
- + To define the composition of mixture we need Mass Fraction :

$$x_{A} = \frac{\text{mass of } A}{\text{total mass}} \left(\frac{\text{kg } A}{\text{kg total}} \text{ or } \frac{\text{g } A}{\text{g total}} \text{ or } \frac{\text{lb}_{\text{m}} A}{\text{lb}_{\text{m}} \text{ total}} \right)$$

Mole Fraction :

$$y_A = \frac{\text{moles of A}}{\text{total moles}} \left(\frac{\text{kmol A}}{\text{kmol total}} \text{ or } \frac{\text{mol A}}{\text{mol total}} \text{ or } \frac{\text{lb-moles A}}{\text{lb-moles total}} \right)$$

The percent by mass of A is 100 x_A , and the mole percent of A is 100 y_A

Sem I (2013/14)

Average Molecular Weight

- \oplus Average molecular weight Average of molecular weight $\overline{oldsymbol{M}}$ of a mixture
- + Base on mole fraction

$$\overline{M} = y_1 M_1 + y_2 M_2 + \ldots = \sum_{all \ components} y_i M_i$$

Base on mass fraction

$$\frac{1}{\overline{M}} = \frac{x_1}{M_1} + \frac{x_2}{M2} + \ldots = \sum_{all \ components} \frac{x_i}{Mi}$$

- Test your self
 - a. Calculate the average molecular weight of hydrocarbon gas mixture having the molar composition of 90% methane, 5% ethane and 5% propane.
 - b. Using the average molecular weight obtained from question (a), calculate the percent mass composition of methane, ethane and propane.

Concentration

Faculty of Petroleum & Renewable Energy Engineering

Faculty of

Petroleum &

- Mass concentration is the mass of component per unit volume of the mixture (g/cm³, lbm/ft³ or kg/m³)
- Molar concentration is the number of moles of the component per unit volume of the mixture (mol/cm³, lb-mole/ft³ or kmol/m³)
- Molarity is the value of the molar concentration of the solute expressed in gram-moles solute/liter solution

♦2-molar solution of A contains 2 mol A/ liter solution

 Concentration factor can be used to relate mass (molar) flow rate of a component of a continuous stream to the total volumetric flow rate of the stream

+ Given: 6 liters of 0.02-molar solution of NaOH contains

PIONEERING TECHNOLOGY OF THE FUTURE

Solution for (2) and (3)

6 liters	0.02 mol NaOH	=	0.12 mol NaOH	
	liter	-		

Conversion of mass, molar and volumetric flow rate

A 0.5 molar aqueous solution of sulfuric acid flows into a process unit at a rate of $1.25 \text{ m}^3/\text{min}$. The specific gravity of the solution is 1.03. Calculate

- (1) the mass concentration of H_2SO_4 in kg/m³,
- (2) the mass flow rate of H_2SO_4 in kg/s, and
- (3) the mass fraction of H_2SO_4

PIONEERING TECHNOLOGY OF THE FUTURE

Sem I (2013/14)

Parts per Million (ppm) and Parts per Billion (ppb)

- Concentration of trace species (present in extremely small amount) in mixtures of gases or liquids
- Defined as mass ratios (usually for liquid) or mole ratio (usually for gases)
- Signify how many parts (e.g. gram, moles) of the species present per million or billion parts (gram, moles) of the mixture
- $\ensuremath{^{\oplus}}$ If y_i is the fraction of component i in the gas or liquid mixture, then by definition

Sem I (2013/14)

Example: Use of ppm

Faculty of Petroleum & Renewable Energy Engineering

The current OSHA limit for HCN in air is 10.0 ppm. A lethal dose of HCN in air (from the Merck Index) is 300 mg/kg of air at room temperature. How many mg HCN/kg air is the 10.0 ppm? What fraction of the lethal dose is 10.0 ppm?

Process and Process Equipment in Chemical Industry

FACULTY OF PETROLEUM & RENEWABLE ENERGY ENGINEERING

PIONEERING TECHNOLOGY OF THE FUTURE

Course Learning Outcomes

At the end of this course students will be able to

PIONEERING TECHNOLOGY OF THE FUTURE

- 1. Describe chemical engineering process terms such as distillation, absorption, scrubbing, liquid extraction, crystallization, adsorption and leaching.
- 2. Explain various types of equipment involved in chemical engineering processes

- Process any operation that causes a physical or chemical change in a substance or a mixture of substances
- + Material enters a process is referred as input or feed
- Adterial leaves is called as *output* or *product*
- + Process Unit is an apparatus for carrying out the process

Sem I (2013/14)

Image: Process Units Faculty of Perroleum & Renewable Energy Engineering Faculty of Perroleum & Renewable Energy Engineering Process Adsorption Absorption Absorption Absorber Adsorber Scrubber Scrubber Scrubber Settler Pump Image: Operation Settler Image: Operation Settler

Stripper

Evaporator

Condenser

Vaporizer

Mixer

Reactor

Compressor

Distillation column

Heat exchanger

Decanter

Dryer

Fan

Faculty of

Engineering

Petroleum &

Renewable Energy

PIONEERING TECHNOLOGY OF THE FUTURE

Distillation

Extraction

Filtration

Stripping

Heating

Cooling

Sem I (2013/14)

Evaporation

Condensation

Crystallization

Raw] [Reaction		Desired	D 1 /	Final products
materials	Feed	Reactants	Chemical	products	Separation	products	Product	to customers
	preparation	-	reactors	-	units	-	formulation/	-
		ļ		ļ]	storage	
					ļ			
					Waste			
					products			
				_	Ļ			
					Environmenta	1		
				c	control facilitie	es		
					Discharge to			
					environment			

Process Flow Diagram

5

Sem 2 (2013/14)

Separation

Faculty of Petroleum & Renewable Energy Engineering

PIONEERING TECHNOLOGY OF THE FUTURE

Separation by solid agent

Separation by Force Field or Gradient

Separation Processes and Separating Agents by Phase Creation or Addition

Process	Separating agent(s)	Application(s)
Absorption	Solvent	Removal of CO_2 and H_2S from natural gas with amine solution.
Adsorption	Solid Adsorbent/resin	Separation of meta- and paraxylene, air separation, water demineralization
Distillation	Heat	Propylene/propane separation, production of gasoline from crude oil, and air separation.
Evaporation	Heat	Water desalination and manufactured of sugars.
Stripping	Stripping Gas	Removal of benzene from wastewaters.
Extraction	Solvent	Recovery of benzene, toluene, xylenes from gasoline reformate, removal of caffeine from coffee.
Drying	Heat	Drying of ceramics, plastics and foods.

Sem I (2013/14)

PIONEERING TECHNOLOGY OF THE FUTURE

5 Distillation

 Raw Material (liquid or gas) is being separated by using

♦Heating

♦ Contact between 2 phases (vapor & liquid)

- Material and energy balance needs to solve simultaneously
- ✤ If there is no packing and stages in the distillation column normally it is called flash column.
- Use to separate raw oil to gasoline, tar and coke.

Product (vapor) (having low boiling point)

Faculty of

Petroleum &

able Energy

Product (liquid) (having high boiling point)

Distillation occurs because of the differences in the vapor pressure (volatility) of the components in the liquid mixture

Sem I (2013/14)

