

5 Combustion By-Products		hergy Categories of Combustion Process
Carbon monoxide (CO) Aldehydes (e.g. H) Unburned Fuel Radicals Oxides of nitrogen (NOx) Oxides of sulphur (SOx)	mainly due to incomplete combustion - reaction between O ₂ (in air) and nitrogen (present in air or fuel) - only for Sulphur- containing fuel	 Complete combustion Stoichiometric Excess air or fuel lean Incomplete or partial combustion Excess fuel or fuel rich or deficient air In practice, combustion will never be complete even though at stoichiometric or excess air conditions due to non-uniformity of fuel and air mixture and complexity of combustion reaction
Sem 2 (2014/15) PIONEERING TECHNOLO	GY OF THE FUTURE	5 Sem 2 (2014/15) PIONEERING TECHNOLOGY OF THE FUTURE 6
5 Source of Oxygen www.utm.my/petroleum		hergy Composition analysis
 Main of source of oxygen comes from atmospheric air Atmospheric air requirement for combustion reaction is assumed to have the following composition 		Fuel composition analysis - conversion from a composition by mass to a molar composition or vice-versa (refer to page 51 in the textbook) Stack or flue gases composition analysis
Air % By volume	By weight (mass)	FuelCombustor / Reactor CO_2, H_2O, O_2, N_2, CO H_2, C_xH_y, SO_2 etc
 O₂ 21 N₂ 79 Analyses of solid / liquid fuels are basis, while paseous fuels are norther than the solution of the	23 77 e normally reported on a mass nally analysed on a volume basis	Wet basis composition :- component mole fractions of gas with the presence of water Dry basis composition :- component mole fractions of the same gas
	, ,	

Solution - Example 1 Theoretical and Excess Oxygen (Air)

100 mol/h methane is fed to a reactor and burns in the reaction

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $CH_4 + 1.5O_2 \rightarrow CO + 2H_2O$

- c) What is the theoretical air flow rates?
- d) If 100% excess air is supplied, what is the flow rate of air entering the reactor?
- e) If the actual flow rates of air is such that 300 mol/h O_2 enters the reactor , what is the percent excess air?

Material Balances Involving Combustion Reaction

- The procedures for writing and solving material balances for a combustion reactor is the same as that for any other reactive system.
- Unlike material balances on non-reactive processes, you cannot automatically assume the total moles of the reactants equal to that of the products (i.e. moles input = moles output)

General balance on reactive system : Input + Generation = Output + Consumption

- What information should be in a process flow chart?
 - Inlet stream components
 - Fuel (single or mixture)
 - Oxygen or Air (21 mole % oxygen, 79 mole% nitrogen)
 - Excess oxygen or air (percent excess oxygen or air that is required or already given)
 - Outlet stream components
 - \sim CO₂, H₂O and CO (if combustion is partially complete)
 - Un-reacted fuel (if fuel not fully consumed)
 - Un-reacted O2 (depends on combustion reaction or excess air)
 - \sim N₂ (if oxygen comes from air)

Sem 2 (2014/15) PIONEERING TECHNOLOGY OF THE FUTURE 13 Sem 2 (2014/15) PIONEERING TECHNOLOGY OF THE FUTURE 14 Material Balances Involving Combustion Reaction

Www.utm.my/petroleum

Faculty of Petroleum

Faculty

Faculty of Petroleum

Faculty

- Percentage of excess oxygen and excess air would have the same value.
 - Calculate the theoretical amount of oxygen or air required for a given amount fuel to produce complete combustion, eventhough the actual combustion reaction is not complete.... (write stoichiometric balance of fuel-oxygen combustion to form CO₂ and H₂O)
 - Multiply the theoretical amount of oxygen or air with the excess air fraction (i.e 1 + fractional excess oxygen or air)
- Which mass balance method is preferred?
 - If only <u>one</u> reaction is involved, all three balance methods (molecular species, atomic species or extent of reaction) are equally convenient.
 - If <u>more</u> than one reaction is involved simultaneously, atomic species balances is usually more convenient.

A mixture of hydrocarbon gases containing , on a volume basis, 95 mole % methane, 2 mole % propane and 3 mole % nitrogen is completely burned with 30 mole % excess air. Calculate the molar composition of combustion products on a dry and wet basis

Solution - Example 3 5/6 Faculty of Petroleum & Renewable Energy Engineering	Solution - Example 3 6/6
<u>Atomic Oxygen balance</u>	<u>Composition of flue gas (wet basis)</u> :
Sem 2 (2014/15) PIONEERING TECHNOLOGY OF THE FUTURE 25	Sem 2 (2014/15) PIONEERING TECHNOLOGY OF THE FUTURE 26
Example 4 Analysis of combustion products www.utm.my/petroleum	Solution - Example 4 1/4 www.utm.my/petroleum
Methane is burned with atmospheric air in a combustor. The analysis of the combustion products on a dry basis is as follows;	Basis :
CO_2 10.00 % O_2 2.37 %	Process flow diagram
CO 0.53 % N ₂ 87.10 %	
Calculate a. the molar composition of combustion products on a wet basis. b. the percentage of excess air required. c. the fractional conversion of methane to carbon dioxide d. the fractional conversion of methane to carbon monoxide.	

Sem 2 (2014/15)

