CHAPTER 6

MULTIPHASE SYSTEMS

eres Softw
© 2002

PIONEERING TECHNOLOGY OF THE FUTURE
Vapor Pressure (p^{*})
nem

- Volatility of a species is the degree to which the species tends to transfer from the liquid or solid state to the vapor state
- Highly volatile species tends to be more likely in vapor phase
- Vapor pressure (p*) - a measure of species volatility
- The higher the vapor pressure for a given temperature the greater the volatility of species.
- Vapor pressure is related to boiling - liquids with high vapor pressures (volatile liquids) will boil at lower temperatures
- The vapor pressure and hence the boiling point of a liquid mixture depends on the relative amounts of the components in the mixture.

Vapor Pressure (p^{*}) - Applications in
\qquad
\qquad
Faculty of Faculty of
Petroum \& Renewable Energy $=$ Engineering (volatility) of the components in the liquid mixture
\boldsymbol{p}^{*} is used in:
-(1) Bubble P calculations - T-xy diagram. (given T, x_{i}, calculate P, y_{i})

- (2) Dew P calculations - T-xy diagram. (given y_{i}, T, calculate x_{i}, P)

In general, p^{*} is crucial (among others) for VLE calculations...

i. Claussius-Clapeyron equation
ii. Cox Chart
iii. Antoine equation

Antoine Equation

$$
\log _{10} p^{*}=A-\frac{B}{T+C}
$$

- Antoine constants (A, B and C) for many compounds are available in the literature Table B. 4 (pg. 640-641) in the textbook

Faculty of Petroleum \&
Renewable Energy Engineering

Calculate the vapor pressure of benzene at $50^{\circ} \mathrm{C}$ using the Antoine Equation. Also estimate the normal boiling point of benzene (the vapor pressure at 1 atm)

Also estimate the normal boiling point of benzene (the vapor pressure at 1 atm) @ equilibrium

$T=75{ }^{\circ} \mathrm{C}$
$\mathrm{P}=760 \mathrm{mmHg}$
$P_{\text {H2O }}=y_{\mathrm{H} 2 \mathrm{O}} \mathrm{P}$

$$
\text { specify } 2 \text { of } \overparen{T, P, \text { or } y_{\mathrm{H} 2 \mathrm{O}}}
$$

If a gas at temperature T and pressure P contains a saturated vapor whose mole fraction is y_{i} and if this vapor is the only species that would condense if the temperature were slightly lowered, the partial pressure of the vapor in the gas equals the pure-component vapor pressure $P^{*}{ }_{i}(T)$ at the system temperature.

Air and liquid water are contained at equilibrium in closed container at $75^{\circ} \mathrm{C}$ and 760 mmHg . Calculate the molar composition of the gas phase

$$
\begin{aligned}
& \text { Raoult's Law, } \\
& \text { single condensable species : } \quad p_{\mathrm{i}}=y_{\mathrm{i}} \mathbf{P}=p_{\mathrm{i}} *(\mathbf{T})
\end{aligned}
$$

Example III

Faculty of

Liquid methyl ketone (MEK) is introduced into a chamber containing nitrogen. The system temperature is increased to $45^{\circ} \mathrm{C}$ and the pressure rises, and then reaches equilibrium at 1060 mm Hg with liquid still present. For the system at equilibrium, calculate the partial pressures and mole fractions of each component in the gas

A stream of air at $100^{\circ} \mathrm{C}$ and 5260 mm Hg contains 10% water by volume.
a. Calculate the dew point of the air

- A gas in equilibrium with a liquid must be saturated with the volatile component of that liquid.
- Partial pressure of a vapor at equilibrium in a gas mixture containing a single condensable component cannot exceed the vapor pressure of the pure component in the system : $p_{i}\left(=y_{i} P\right) \leq p^{*}$
\checkmark For a given temperature, a vapor (vapor pressure) present in a gas is less than its saturation amount, $p_{i}<p^{*}$, is called superheated vapor
\checkmark If a superheated vapor is cooled down at constant pressure, the temperature at which $p_{i}=p^{*}$ (saturated vapor) is known as the dew point of the gas
- Any attempt to increase p_{i} by either adding more vapor or increasing total pressure, would lead to condensation.
b. Calculate the percentage of vapor that condenses and the final composition of the gas phase if the gas is cooled to $80^{\circ} \mathrm{C}$ at constant pressure.
c. Calculate the percentage of vapor that condenses and the final gas phase composition if instead of being cooled at constant pressure the gas is compressed isothermally (at constant temperature) to 8500 mm Hg .
(R) Multi-component Gas-Liquid

Systems -

A benzene-toluene mixture containing 30 mole\% benzene vapor is placed a closed container at 1 atm and $115^{\circ} \mathrm{C}$. Is the vapor mixture is in equilibrium with liquid mixture
i. A benzene-toluene mixture containing $30 \mathrm{~mole} \%$ benzene vapor is placed a closed container at 1 atm and $115^{\circ} \mathrm{C}$. Is the vapor mixture is in equilibrium with liquid mixture?
ii. An equal-molar liquid mixture of benzene (B) and toluene (T) is in equilibrium with its vapors at $50^{\circ} \mathrm{C}$. What is the system pressure and composition of the vapor?

An equal-molar liquid mixture of benzene (B) and toluene (T) is in equilibrium with its vapors at $50^{\circ} \mathrm{C}$. What is the system pressure and composition of the vapor?

Vapor Liquid Equilibrium (VLE) for ideal Solutions - Mixture of Compqnentstan

- In a vaporization process of liquid mixture containing several components at constant pressure, the vapor composition will have a composition different from that of the liquid.
- As vaporization proceeds the composition of the remaining liquid continuously changes and hence does so its vaporization temperature
- A similar phenomenon occurs if a mixture of vapors is subjected to condensation at constant pressure - the composition of vapor and the condensation temperature both change.

Constant P

Application of Vapor Liquid Equilibrium (VLE) in distillation process

(6) Vapor Liquid Equillbrium (VLE) for ideal Solutions - Mixture of Components

Distillation occurs because of the differences in the vapor pressure (volatility) of the components in the liquid mixture

Ideal solutions - Raoult's and Henry's law are obeyed \& the gas vapor can be considered as ideal gas

Constant P heating path on a $T-x-y$ diagram
A - subcooled liquid
B - saturated liquid (Bubble Point Temp.)
C - saturated vapor (Dew point Temp.)
D - superheated vapor
B^{\prime} - vapor composition in equilibrium with liquid at bubble point. temp.
C^{\prime} - liquid composition in equilibrium with vapor at dew point. temp.
constant P

Vapor Liquid Equilibrium (VLG) for ideal Solutions - Mixture of Components

constant P

Bubble-point temperature ($T_{b p}$) of the liquid - the temperature at which the first bubble vapor forms when the liquid is heated at given pressure

Raoult's law:
$\mathrm{p}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mathrm{P}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{~T}_{\mathrm{bp}}\right)$ hence, $\sum \mathrm{y}_{\mathrm{i}}=1=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{~T}_{\mathrm{bp}}\right)}{\mathrm{P}}$ (trial \& error)
and Bubble-point pressure $\left(P_{\mathrm{bp}}\right)$ of the liquid - the pressure at which the first bubble vapor forms when the liquid is heated at given temperature

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mathrm{P}_{\mathrm{bp}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}(\mathrm{~T}) \\
& \sum \mathrm{y}_{\mathrm{i}}=1=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}(\mathrm{~T})}{\mathrm{P}_{\mathrm{bp}}} \quad \text { hence, } \mathrm{P}_{b p}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}(\mathrm{~T})
\end{aligned}
$$

Constant P cooling path on a $T-x-y$ diagram

A - superheated vapor
B - saturated vapor (Dew point Temp.)
C - saturated liquid (Bubble Point Temp.)
D - subcooled liquid
B^{\prime} - liquid composition in equilibrium with vapor at dew point. temp.
C^{\prime} - vapor composition in equilibrium with liquid at bubble point. temp.

Example VIT | Faculty of |
| :--- |
| |
| Renewable Energy |
| Engineering |

Dew-point temperature ($T_{d p}$) of the vapor - temperature at which the first drop of liquid forms when the vapor is cooled at given pressure Raoult's law :

$$
\mathrm{p}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mathrm{P}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{~T}_{\mathrm{dp}}\right) \quad \text { hence, } \sum \mathrm{x}_{\mathrm{i}}=1=\frac{\mathrm{y}_{\mathrm{i}} \mathrm{P}}{\mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{~T}_{\mathrm{dp}}\right)} \text { (trial \& error) }
$$

Dew-point pressure $\left(P_{d p}\right)$ of the vapor - pressure at which the first drop of liquid forms when the vapor is cooled at given temperature

$$
\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1=P_{d p} \sum_{i} \frac{y_{i}}{\mathrm{p}_{\mathrm{i}}^{*}(\mathrm{~T})} \quad \text { hence, } \quad P_{d p}=\frac{1}{\sum_{i} \frac{y_{i}}{\mathrm{p}_{\mathrm{i}}^{*}(\mathrm{~T})}}
$$

A vapor mixture containing 30 mole\% benzene and 70% toluene at 1 atm is cooled isobarically a closed container from an initial temperature of $115^{\circ} \mathrm{C}$.
a. At what temperature does the first drop of condensate form? What is its composition?
b. At one point during the process the system temperature is $100^{\circ} \mathrm{C}$. Determine the mole fraction of benzene in the vapor and liquid phases.
c. Calculate the ratio of total moles in vapor to total moles liquid at the system of $100^{\circ} \mathrm{C}$
a. At what temperature does the first drop of condensate form? What is its composition?
$T_{\mathrm{dp}}=?$ and $P=1 \mathrm{~atm}(760 \mathrm{~mm} \mathrm{Hg})$

Sem 2 (2013/14)
c. The ratio (total moles in vapor/total moles liquid) at the system temperature is $100^{\circ} \mathrm{C}$

