Single Phase System

D Density and Specific Volume of gas do not change with pressure and temperature
> For Gas we need to know the PVT relationship

* Pressure
* Temperature
* Specific Volume
. Examples of problem requiring PVT relationship
*. Propane at $120^{\circ} \mathrm{C}$ and 2.3 bars passes through flow meter that reads 250 $\mathrm{L} / \mathrm{min}$. What is the mass flow rate of the gas?
* A pure hydrocarbon gas fills a 2 -liter vessel at $30^{\circ} \mathrm{C}$ with an absolute pressure of 25 atm . How many moles of gas are contained in the vessel?
*. Calculate the volume in liters occupied by 100 g of N_{2} at $23^{\circ} \mathrm{C}$ and 3 psig.

Ideal Gas Law

Faculty of
Petroleum \&
Renewable Energy
Engineering
> The equation can also be written as

$$
P \hat{V}=R T
$$

where $\hat{V}=V / n$ is the molar volume of the gas

- Any gas is presented by the above equation is known as an ideal gas or perfect gas
> 1 mol of ideal gas at $0^{\circ} \mathrm{C}$ and 1 atm occupies 22.415 L , whether the gas is argon, nitrogen, or any other single species or mixture of gases

Propane at $120^{\circ} \mathrm{C}$ and 1 bar absolute passes through a flow meter that reads $250 \mathrm{~L} / \mathrm{min}$. What is the mass flow rate of the gas?

How many ways can we calculate the mass flow rate? What additional information is needed?
... Using ideal gas law

Standard Temperature and

Pressure (STP)

Engineering
> Reference temperature ($0^{\circ} \mathrm{C}, 273 \mathrm{~K}, 32^{\circ} \mathrm{F}$ and $492^{\circ} \mathrm{R}$) and pressure (1 atm) are commonly known as STP (standard temperature and pressure)
> The other related values is easy to commit to memory like the relation of
$\hat{V}_{s}=\frac{V_{s}}{n_{s}}=0.0224 \frac{\mathrm{~m}^{3}(\mathbf{S T P})}{\mathrm{mol}} \Leftrightarrow 22.4 \frac{\text { liters(STP) }}{\mathrm{mol}} \Leftrightarrow 359 \frac{\mathrm{ft}^{3}(\mathbf{S T P})}{\mathrm{lb}-\text { mole }}$

Standard cubic meters $(S C M) \rightarrow m^{3}(S T P)$
Standard cubic feet (SCF) $\rightarrow \mathrm{ft}^{3}(\mathrm{STP})$
> Using PVT equation is easy, provided you have a set of R constant value with different units.
> A way to avoid this is by dividing the gas law from process condition with given chosen reference condition

$$
\frac{P V}{P_{s} V_{s}}=\frac{n T}{n_{s} T_{s}} \quad \text { or } \quad \frac{P V}{P_{s} \hat{V}_{s}}=n \frac{T}{T_{s}}
$$

Standard Conditions for gases

System	T_{s}	P_{s}	V_{s}	n_{s}
SI	273 K	1 atm	$0.022415 \mathrm{~m}^{3}$	1 mol
CSS	273 K	1 atm	22.415 L	1 mol
American	$492^{\circ} \mathrm{R}$	1 atm	$359.05 \mathrm{ft}^{3}$	1 lb -mole

Sem 2 (2013/14)

The pressure gauge on a $20 \mathrm{~m}^{3}$ of nitrogen at $25^{\circ} \mathrm{C}$ reads 10 bar. Estimate the mass of nitrogen in the tank by
(i) direct solution of the ideal gas equation of state and,
(ii) conversion from standard conditions.

What does pressure reading obtained from a pressure gauge reading indicate?

The pressure gauge on a $20 \mathrm{~m}^{3}$ of nitrogen at $25^{\circ} \mathrm{C}$ reads 10 bar. Estimate the mass of nitrogen in the tank by

Pressure gauge reading is not absolute pressure, i.e. P_{g}.
Thus, absolute pressure, $\mathrm{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{g}}+\mathrm{Patm}$
(i) direct solution of the ideal gas equation of state
(ii) conversion from standard conditions.

Q3 - Standard and True

 Volumetric Flow RatesThe volumetric flow rate of an ideal gas is given as 35.8 SCMH (i.e $\mathrm{m}^{3} / \mathrm{h}$ at STP).
(i) Calculate the molar flow rate $(\mathrm{mol} / \mathrm{h})$,
(ii) If the temperature and pressure of the gas are $30^{\circ} \mathrm{C}$ and 152 kPa , calculate the actual volumetric flow rate.
(i) Molar flow $(\mathrm{mol} / \mathrm{h})$ at STP
n mol
V_{1}, T_{1}, P_{1} \square $n \mathrm{~mol}$

If the input and output streams at indicated temperatures and pressures can be reasonably assumed to follow ideal gas behaviour, then

$$
\begin{gathered}
P_{1} V_{1}=n R T_{1} \quad \text { and } \quad P_{2} V_{2}=n R T_{2} \\
\therefore \quad \frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{T_{1}}{T_{2}}
\end{gathered}
$$

(ii) If the temperature and pressure of the gas are $30^{\circ} \mathrm{C}$ and 152 kPa calculate the actual volumetric flow rate,
> Suppose n_{A} moles of substance A, n_{B} moles of B and n_{C} moles of C and so on, are contained in a volume V at temperature T and total pressure P.
> The partial pressure p_{A} of A in the mixture is defined as the pressure exerted by n_{A} moles of A alone occupied at the same total volume V only for ideal gases at the same temperature T

$$
\begin{array}{lll}
\text { From ideal gas law : } & P V=n R T & \ldots .(1) \\
\text { From partial pressure: } & P_{A} V=n_{A} R T & \ldots . \text { (2) }
\end{array}
$$

Dividing Eq. (1) by Eq. (2) : $\frac{p_{A}}{P}=\frac{n_{A}}{n}=y_{A}$ or $\mathrm{p}_{\mathrm{A}}=\mathrm{y}_{\mathrm{A}} \mathrm{P}$
Thus, the ideal partial pressure of ideal gas add up to the total pressure P

$$
\Sigma p_{i}=p_{A}+p_{B}+p_{C}+\ldots=\left(y_{A}+y_{B}+y_{C}+\ldots\right) P=P
$$

$\Rightarrow \quad$ Suppose n_{A} moles of substance A, n_{B} moles of B and n_{C} moles of C and so on, are contained in a volume V at temperature T and total pressure P.
Nitrogen from a cylinder is bubbled through liquid acetone at 1.1 bar and stream $60^{\circ} \mathrm{C}$ at the rate of $2 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{min}$.

The nitrogen saturated with acetone vapor leaves at $1.01325 \mathrm{bar}, 35^{\circ} \mathrm{C}$ at the rate of $3.83 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{min}$.

What is the partial pressure of acetone?

Nitrogen from a cylinder is bubbled through liquid acetone at 1.1 bar and stream $60^{\circ} \mathrm{C}$ at the rate of $2 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{min}$. The nitrogen saturated with acetone vapor leaves at 1.01325 bar, $35^{\circ} \mathrm{C}$ at the rate of 3.83×10^{-4} $\mathrm{m}^{3} / \mathrm{min}$. What is the partial pressure of acetone? Solubility of nitrogen in liquid acetone is negligible.

> The partial volume v_{A} of A in the mixture is defined as the volume that would be occupied by n_{A} moles of A alone only for ideal gases at the total pressure P at the same temperature T of the mixture
$\begin{array}{ll}\text { From ideal gas law : } & P V=n R T \\ \text { From partial pressure: } & {P v_{A}}=n_{A} R T \ldots \text { (1) }\end{array}$
Dividing Eq. (1) by Eq. (2) : $\frac{v_{A}}{V}=\frac{n_{A}}{n}=y_{A} \quad$ or $\mathrm{v}_{\mathrm{A}}=\mathrm{y}_{\mathrm{A}} \mathrm{V}$
Thus the ideal partial volume of
ideal gas add up to the total volume V : The volume fraction of a substance in an ideal gas mixture equals the mole $v_{A}+v_{B}+v_{C}+\ldots=\left(y_{A}+y_{B}+y_{C}+\ldots\right) V=V$ fraction of this substance

An ideal gas mixture contains 35% helium, 20\% methane and 45% nitrogen by volume at 2.00 atm absolute and $90^{\circ} \mathrm{C}$. Calculate
(a) the partial pressure of each component.
(b) the average molecular weight of the gas.
> At extremely low temperature or sufficiently high pressure, a value of V predicted with the ideal gas law becomes significantly inaccurate, especially when the gas contains a mixture of several gas species.
> Equation of state (EOS) for real (i.e. non-ideal or imperfect) gases

Single gas species

- Virial EOS (Benedict-Webb-Rubin, BWR)
- Cubic EOS (Soave-Redlich-Kwong, SRK)
- Compressibility Factor EOS (PV = znRT)

Gas mixtures

- Kay's Rule

Sem 2 (2013/44)
PIONEERING TECHNOLOGY OF THE FUTURE
Physical properties for calculations involving Real Gases
 Faculty of
Petroleum \& Renowable Eneray
> Critical temperature $\left(T_{c}\right)$ - the highest temperature at which a species can coexist in two phases (liquid and vapor)
> Critical pressure $\left(P_{c}\right)$ - the pressure at which a species can coexist in two phases (liquid and vapor) at the critical temperature.
> A substance at T_{c} and P_{c} is said to be at its critical state
> Substances at temperatures above T_{c} and P_{c} are referred to as supercritical fluids

	Molar mass	ω	Tc/K	P_{c} /bar	z_{c}	$\mathrm{cm}^{3} \mathrm{Vmol}^{\mathrm{max}^{-1}}$	Tn/K
Methane	16.043	0.012	190.6	45.99	0. 286	98.6	111.4
Ethane Propane	34.097	${ }_{0}^{0.150}$	305.3 369.8	488.72	0.279 0.276	145.5 200.0	${ }_{231.1}^{184.6}$
n-Butane	58.123	O. 200	425.1	37.96 33.70	O. 274	255.	272.7
${ }^{n}$-Pentanc	72.150	O.252	469.7 5076	33.70 30 30	- 2.270	313. 371	309.2 3419
${ }_{n}^{n}$-Hexatae	100.204	-. 350	540.2	37.25 27.40	- 0.261	428.	371.6
${ }_{n}^{n}$--Nectane	114.231 128.258	O. 0.444	568.7 594.6	24.90 22.90	O.252	544.	398.8 424.0
n-Decane	142.285	0.492	617.7	21.10	0.247	${ }_{6} 544$.	${ }_{447.3}$
Isobutane	58.123	O. 181	408.1	${ }^{36.48}$	0.282	262.7	261.4
Isoctane	114.231 70.134	0.302 0.190	544.0 511.8	25.68 45.02	0.266 0.273	${ }^{468}$	372.4
Cyclohexane	84.161	0.210	553.6	40.73	0.273	308.	353.9
Methylcyclopentane	84.161	0. 230	532.8	37.85	0. 272	319.	345.0
Methylcyclohexane	98.188	0.235 0.087 0	572.2 282.3	34.71 50.40	O.269 0.281 0.281	368. 131	374.1 169.4
Propylene	42.081	0.140	${ }_{365.6}^{2825}$	${ }_{46.65}$	-.289	188.4	225.5
1-Butenc	(56.108	O. 0.191	420.0	40.43	-0.277	138.4 233.8	260.9
cis-2-Butene	S6.108	-	435.6 428.6	42.43 41.00	0.273 0.275	233.8 237.7	276.9 274.0
1-Hexene	84.161	0. 280	504.0	31.40	0.265	354.	336.3
(1sobutylene	S4.092	- 0.194	417.9 425.2	42.77	0.275 0.267	238.9 220.4	266.3
Cyclohexene	84.145	\bigcirc	560.4	43.50	O.272	220.4	${ }_{3}^{268.7}$
Acetylene	26.038	0.187	308.3	61.39	0.271	113.	189.4
Benzene	78.114	- 0.210	562.2	48.98 41.06	0.271 0.264	259.	353.2 383.8
Toluy	+106.167	O. 303	6917.8	30.06	- 0.263	316.	383.8 409.4
${ }_{\text {Cumene }}$ C-Xylene	120.194 106167	0.326 0.310 0	${ }_{6}^{631.1}$	32.09 3734 37	O.261 0.263 0.263	427.	425.6
o-xylene	108.167 100.167	-0.310	630.3 617.1	37.34 35.36	O.263 0.259	369. 376.	417.6 412.3
p-xylene	106.167	0.322	616.2	35.11	- 2.260	379.	411.5
Styrene	104.152 128.174	- $\begin{aligned} & 0.297 \\ & 0.302\end{aligned}$	636.0 748.4	48.40	0.256 0.269	352. 413.	418.3
Naphthatene	${ }_{154.211}$	-0.365	789.3	${ }_{38.50}$	O.295	502.	528.2
Formaldehyde	30.026 44.053	-0.282	408.0	65.90 5550	0223 0221 0	115.	254.1
Acetaldehyde	44.079	-0.291	5606.6	S57.50	-. 2251	154.	294.0 330.1
Ethy acetate	88.106	O.366	523.3 503.	38.80	-2.255	228.	350.2
Methyl ethyl ketone	${ }_{72.107}$	-0.323	508.2 535.5	${ }_{41.50}$	-.233	209.	329.4 352.8
Diethyl ether ${ }^{\text {D }}$ Methyl t-butyl ether	74.123 88.150	0.281 0.260	406.7 497.1	36.40 34.30	O.263 0.273	280. 329.	307.6 328.4

Physical properties for calculations
involving Real Gases

Corresponding States Approach for
Compressibility Factors

\qquad

Estimation of Compressibility Factors

Faculty of
Petroleum \& Petroleum \& Renewable Energy

1. All temperatures and pressures used to estimate the compressibility factor (z) must be absolute !!!!
2. Look up or estimate the critical temperature $\left(T_{c}\right)$ and critical pressure $\left(P_{c}\right)$
3. If the gas is hydrogen or helium, determine the pseudo critical constant from the empirical formulas (newton's correction)

$$
\left(T_{c}\right)_{\text {adjusted }}=T_{c}+8 \mathrm{~K} \quad \text { and } \quad\left(P_{c}\right)_{\text {adjusted }}=P_{c}+8 \mathrm{~atm}
$$

4. If both temperature and pressure are known

- Calculate the reduced temperature, $T_{r}=T / T_{c}$ and reduced pressure, $P_{r}=P / P_{c}$
\Rightarrow Look up the value of z on a generalized compressibility chart (z vs P_{r} for specific values of T_{r})

Estimation of Compressibility Factors
5. If either temperature or pressure and molar volume is unknown
>Calculate the ideal critical volume

$$
V_{r}^{\text {ideal }}=\frac{\hat{V}}{\hat{V}_{c}^{\text {ideal }}}=\frac{\hat{V}}{R T_{c} / P_{c}}=\frac{\hat{V} P_{c}}{R T_{c}}
$$

$>$ Look up the value of z on generalized compressibility charts (low, medium or high pressure: \boldsymbol{z} vs $V_{r}^{\text {ideal }}$ for specific values of T_{r})

Sem 2 (2013/14)

 PIONEERING TECHNOLOGY OF THE FUTURECompressibility Factor (Low Pressures)

	Faculty or Renewable Energy
Enginering	

Sem 2 (2013/44)
PIONEERING TECHNOLOGY OF THE FUTURE

(ㄷ) | Compressibility Factor |
| :---: |
| (Medium Pressures) |

Sem 2 (2013/14)
() Compressibility Factor (High Pressures)

(Figure 5.4.4)
Sem 2 (2013/14)

Natural gas contains mainly methane is stored in a 35 -liter CNG tank at 3000 psig and $30^{\circ} \mathrm{C}$. Estimate the actual capacity (m^{3}) at standard temperature and pressure (STP) assuming
a. ideal gas behaviour
b. real gas behaviour
(c) Q7-Kay's Rule
> Techniques to be used when we have mixture of real gas

- Calculate the pseudo critical constant of gas mixture component
- Pseudo critical Temperature: $T_{c}{ }^{\prime}=y_{a} T_{c a}+y_{b} T_{c b}+y_{c} T_{c c}+\ldots$
- Pseudo critical Pressure: $\quad P_{c}^{\prime}=y_{a} P_{c a}+y_{b} P_{c b}+y_{c} P_{c c}+\ldots$
- If the temperature and pressure of the mixture are known, calculate
- Pseudoreduced Temperature: $T_{r}{ }^{\prime}=T / T_{c}{ }^{\prime}$
- Pseudoreduced Pressure: $\quad P_{r}^{\prime}=P / P_{c}$
- Use the generalized compressibility chart to obtain z_{m}
- All pseudo critical constant of mixture are simply empirical parameters and do not have any physical significance

The interest in natural gas as an alternative fuel stems mainly from its cleaner burning qualities. Natural gas can either be stored onboard a vehicle as compressed natural gas (CNG) or natural gas (LNG). Suppose that natural gas containing 85% methane and 15% ethane by volume is stored in a 35 -liter CNG tank at 3000 psig and $30^{\circ} \mathrm{C}$.
a. Estimate the actual capacity $\left(m^{3}\right)$ of natural gas at standard temperature and pressure (STP).
b. Calculate the exact volume $\left(\mathrm{m}^{3}\right)$ of combustion air at standard temperature and pressure (STP), if natural gas undergoes complete combustion.
(a) Use generalized compressibility chart to estimate z for (a) nitrogen at $40^{\circ} \mathrm{C}$ and 40 MPa , and (b) helium at $-200^{\circ} \mathrm{C}$ and 350 atm .
(b) Question 5.74 (pp. 234)

