Instruction : Write down the basis of calculation and assumptions (if any) clearly. Box the final answer (s)

CHAPTER 5

1. A steel container has a volume of $200 \mathrm{~m}^{3}$. It is filled with nitrogen at $22^{\circ} \mathrm{C}$ and atmospheric pressure. If the container valve is opened and the container is heated to $200^{\circ} \mathrm{C}$, calculate the fraction of the nitrogen which leaves the container. (0.38)
2. $20 \mathrm{ft}^{3}$ of nitrogen at 300 psig and $100^{\circ} \mathrm{F}$ and $30 \mathrm{ft}^{3}$ of oxygen at 200 psig and $340^{\circ} \mathrm{F}$ are injected into a $15 \mathrm{ft}^{3}$ vessel. The vessel is then cooled to $70^{\circ} \mathrm{F}$. Find the partial pressure of each component in the $15 \mathrm{ft}^{3}$ vessel. Assume that the ideal gas law applies. ($\mathrm{N}_{2}=396$ psia, $\mathrm{O}_{2}=286$ psia)
3. A gas analyzes 60% methane and 40% ethylene by volume. It is desired to store 12.3 kg of this gas mixture in a cylinder. The maximum temperature and pressure of $45^{\circ} \mathrm{C}$ and 26 MPa , respectively. Calculate the volume of the cylinder in m^{3} using the compressibility factor determined by the Kay's rule. ($0.051 \mathrm{~m}^{3}$).
4. A gas composed of $80 \% \mathrm{CO}_{2}$ and 20% ethanol is at 500 K . What is the pressure if the volume per gmol is $180 \mathrm{~cm}^{3} / \mathrm{gmol}$? (177 atm)
5. A gas mixture containing 85% methane, 12% ethane and the balance carbon dioxide by volume is stored in a 35 -liter tank at 3000 psig and $30^{\circ} \mathrm{C}$.
a. Calculate the theoretical volume $\left(\mathrm{m}^{3}\right)$ of combustion air at atmospheric condition. (Assuming atmospheric pressure and temperature are 760 mm Hg and $30^{\circ} \mathrm{C}$, respectively). ($89.35 \mathrm{~m}^{3}$)
b. Assuming complete combustion of stoichiometric proportion of fuel and air mixture, calculate the volume $\left(\mathrm{m}^{3}\right)$ of the flue gases at STP. $\left(89.2 \mathrm{~m}^{3}\right)$

CHAPTER 6

1. Liquid acetone and air are kept in a tank in a ratio of $3: 1$ by mass and heated in a tank until all acetone becomes vapor. Nitrogen saturated with acetone vapor leaves the tank in equilibrium at 1 atm . Calculate the temperature of the gas mixture and its molar composition. ($41.5^{\circ} \mathrm{C}, \quad Y_{A c}=0.591 \mathrm{~mol} \mathrm{~N} 2 / \mathrm{mol}$)
2. Air at $90^{\circ} \mathrm{C}$ and 1.00 atm (absolute) contains $10.0 \mathrm{~mole} \%$ water. This stream of air enters a compressor-condenser, in which the temperature is lowered to $15.6^{\circ} \mathrm{C}$ and the pressure, is raised to 3.00 atm . The air leaving the condenser is then heated isobarically to $100^{\circ} \mathrm{C}$. Calculate the fraction of water that is condensed from the air and the ratio m^{3} outlet air at $100^{\circ} \mathrm{C} / \mathrm{m}^{3}$ feed air at $90^{\circ} \mathrm{C}$. $\left(0.947 \mathrm{~mol}\right.$ condensed $/ \mathrm{mol}$ feed; $0.31 \mathrm{~m}^{3}$ outlet air $/ m^{3}$ feed air)
3. Wet air at $27^{\circ} \mathrm{C}$ and 1 atm contains $2.6 \mathrm{~mol} \%$ water vapor. We need to feed the air at $1000 \mathrm{kmol} / \mathrm{h}$ into a reactor, but the air must contain at most $0.6 \mathrm{~mol} \%$ water vapor. You propose to remove the water by condensation.
a. Calculate the condenser temperature and the percentage of water condensation. Assume the pressure drop across the condenser is negligible. $\left(0^{\circ} \mathrm{C}, 77.35 \%\right)$
b. Referring to question 3, determine the operating pressure if the condensation is achieved by isothermal compression. (4450 mm Hg)
4. A stream of mixture containing $20 \mathrm{~mol} \%$ ethanol and $80 \mathrm{~mol} \%$ water is fed to a flash drum operating at 760 mm Hg . The feed rate is $100 \mathrm{kmol} / \mathrm{h}$. The mixture is heated until the system is in equilibrium at $95^{\circ} \mathrm{C}$. The vapor and liquid products are removed continuously. Calculate the flow rate and composition of vapor and liquid products. ($V=28.75 \mathrm{kmol} / \mathrm{h}, L=71.25 \mathrm{kmol} / \mathrm{h}, Y_{\text {eto }}=30 \mathrm{~mol} \%, X_{\text {etoH }}=16 \mathrm{~mol} \%$)
5. $100 \mathrm{~mol} / \mathrm{h}$ of an unknown composition of methanol/water liquid mixture is fed to an equilibrium flash tank operating at $77^{\circ} \mathrm{C}$. The system conditions are such that 50% of the entering feed is vaporized and the vapor product leaving the tank contains $80 \mathrm{~mol} \%$ methanol. Determine the mol factions of methanol and water in the liquid stream leaving the tank, and the pressure (atm) at which the tank operates and the molar composition (mol\%) of the feed mixture) . ($X_{m}=0.508 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} / \mathrm{mol}$ and $X_{w}=0.492 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol}$, $P=772.8 \mathrm{~mm} \mathrm{Hg}$, Feed composition : $65.4 \mathrm{mo} \% \mathrm{CH}_{3} \mathrm{OH}$ and $34.6 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}$)
