SKKK1113 Principles of Chemical Processes 1 Section: 02

COURSE OUTLINE

Department of Energy Engineering
Faculty of Chemical & Energy Engineering
Universiti Teknologi Malaysia, 81310 UTM
Johor Bahru, Johor, Malaysia

Outline of this Lecture

About Myself
Synopsis of the Course
Course Outcomes
References
Topic
Teaching Methodology
Assessment
Tests

About Myself

Instructor : HASRINAH HASBULLAH

Position/ : Senior Lecturer

Room No. N01- 202

Department of Energy Engineering

Faculty of Chemical & Energy Engineering

Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

Tel.: +(6)07-55 35516

Email : hasrinah@petroleum.utm.my

Lectures : MONDAY 0900 - 1100 N03 1-3

WEDNESDAY 0900 – 1000 N03 1-3 **WEDNESDAY** 1000 – 1100 (T) N03 1-3

Course website : http://elearning.utm.my / http://elea

Synopsis of the Course

- This course introduces students to the chemical engineering profession and the fundamental operations of chemical process equipment.
- Providing students with the basic principles of chemical engineering material balances as well as calculation techniques to solve material balance problems for chemical process systems and equipment.
- Providing students with the basic principles of the First Law of thermodynamics and its applications.

Course Outcomes

CO1

Indicate basis, unit conversion, process diagram for various chemical processes and process variables when solving problem

CO₃

Construct the mass balance calculations on single or multiple process units with or without recycle, purge, or bypass streams for reactive processes

CO₅

Analyze mass balance calculations of multiple component gas-liquid systems at equilibrium

CO7

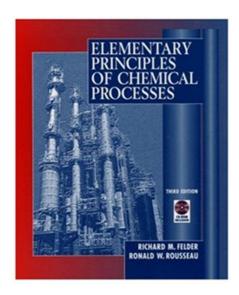
Conduct complex problem solving solution of mass and energy problem using principle of conservation

CO₂

Calculate mass balance on single or multiple process units with or without recycle, purge, or bypass streams for nonreactive processes

CO4

Perform mass balance calculations of single phase system


CO6

Solve the problems using first law of thermodynamics and conservative equations by identifying forms of energy, reference state conditions and state properties

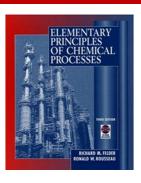
CO8

Commit in preparation of learning experience through reflections

References

Elementary Principles of Chemical Processes

Third Edition Felder, R.M. and Rousseau, R.W.


Basic Principles and Calculations in Chemical Engineering Eighth Edition

Himmelblau, D.M. and Riggs, J.B.

Topics to be Discussed

Main Text:

Felder, R.M. and Rousseau, R.W. *Elementary Principles of Chemical Processes*, 3rd ed., John Wiley & Sons, New York, 2000.

Introduction to Engineering Calculations	Chapter 02
Process and Process Variables	Chapter 03
Fundamentals of Material Balances	Chapter 04
Material Balances on Reactive Processes	Chapter 04
Single Phase Systems	Chapter 05
Multi-Phase Systems	Chapter 06
Energy Balance for Closed and Open Systems	Chapter 07

Teaching Methodology

Content delivery through lectures

- Lectures are given based on the active learning approach.
- For each of the subtopics, at least one example of test or exam standard will be discussed to enhance students understanding on the subject matter.

Tutorial

- Students will be divided into groups.
- Students are required to discuss and solve the questions given in their group
- Group project
- Independent study

Assessment

The breakdown for grading is as follows:

Assignment and Quiz 10% Critical Thinking and Problem Solving (CTPS), Life Long Learning (Developing E-Portfolio) 5% : **Project** 5% Test 1 10% Test 2 10% Test 3 10% Final exam 50% **TOTAL** : 100%

Tests

- Test 1
 - ✓ CO1, CO2
 - **✓ 09/3/2016**: DK8 N24 8.00 10 pm
- Test 2
 - ✓ CO1, CO2, CO3
 - ✓ **13/4/2016**: DK8 N24 8.00 10 pm
- Test 3
 - ✓ CO1, CO4, CO5
 - √ 18/5/2016 : DK8 N24 8.00 10 pm
- Final exam
 - \checkmark CO1 , CO2, CO3, CO4, CO5, CO6
 - √ As scheduled