

Chapter 2

Introduction to Engineering Calculations

Principles of Chemical Processes I

PIONEERING TECHNOLOGY OF THE FUTURE

Course Learning Outcomes

fcee.utm.my

At the end of this course students will be able to

+Convert one set of units in a function or equation into another equivalent set

2.1 Units and Dimensions

Faculty of Chemical & Energy Engineering

- Dimension property that can be measured such as
 - ✓ length
 - √ time
 - √ mass
 - √ temperature
 - ✓ multiplying or dividing other dimensions
- Unit measured and counted quantity has
 - √ value (2.35)
 - √ unit (2.35 gram)
- + It is essential to write the value and unit in equation
 - ✓ 2 meters, 0.3 second, 4.5 kilograms, 5 gold rings

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE

Properties of Units

Faculty of Chemical & Energy Engineering

- + Units can be treated like algebraic variables
 - ✓ added and subtracted when having same units

$$3 \text{ cm} - 1 \text{ cm} = 2 \text{ cm}$$
 $(3x - x = 2x)$

$$(3x - x = 2x)$$

but

$$3 \text{ cm} - 1 \text{ mm (or } 1 \text{ s)} = ? \qquad (3x - y = ?)$$

✓ can always be combined by multiplication or divisions

$$\frac{5.0 \text{ km}}{2.0 \text{ h}} = 2.5 \text{ km/h}$$

$$\frac{6 \text{ cm}}{2 \text{ cm}} = 3$$
 (3 is a dimensionless quantity)

2.2 Conversion of Units

Faculty of Chemical & Energy Engineering

fcee.utm.m

 When having appropriate dimensions, measured quantity can be expressed in term of other units

The equivalence between two expressions is given by ratio known as conversion factor

$$\frac{1 \text{ cm}}{10 \text{ mm}}$$
(1 centimeter per 10 millimeters)
$$\frac{10 \text{ mm}}{1 \text{ cm}}$$
(10 millimeters per 1 centimeter)

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE

Conversion Factors

Faculty of Chemical & Energy Engineering

A given quantity is expressed into new unit by using a conversion factor (new unit/old unit)

(36 mg)
$$\times \frac{1 g}{1000 mg} = 0.036 g$$

+ Alternative way to write this equation

Method for using Conversion Factor

Faculty of Chemical & Energy Engineering

- Set up a dimensional equation
 - ♦ write the given quantity and its unit on the left
 - write the units of conversion factors (new unit/old unit)
 - fill in the values of the conversion factors
 - carry out the indicated arithmetic operations to find the desired values
- ⊕ Example: Convert acceleration of 1 cm/s² to km/y²

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE

Conversion factor and units

Faculty of Chemical & Energy Engineering

- Problems:
- 1) Change 400 in³/day to cm³/min
- 2) If a plane travels at twice the speed of sound (assume the speed of sound is 1100 ft/s), how fast is it going in miles per hour?

2.3 Systems of Units

Faculty of Chemical & Energy Engineering

fcee.utm.my

- Base Units units for dimensions of mass, length, time, temperature, electrical current, and light intensity
 - √ kilogram, meter, kelvin, ampere, candela
- + Multiple units multiples or fraction of base unit
 - ✓ minutes, hours, milliseconds or all in term of base unit second
- + Derived units obtained in one of two ways
 - ✓ Multiplying and dividing base units (cm², ft/min, kg.m/s²) which are known as compound units
 - ✓ Defined as equivalents of compound units (1 erg = 1 g.cm/s², 1 lb_f = 32.174 lb_m.ft/s²)

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE

Systems Of Units

Faculty of Chemical & Energy Engineering

fcee.utm.m

♦ System Internationale d'Unites

Length meter (SI)

centimeter(CGS)

Mass kilogram (SI)

gram (CGS)

Moles gram-mole (mol)

Time second (s)
Temperature kelvin (K)
Electric current ampere (A)
Light intensity candela (cd)

American engineering system

Length foot (ft)

Mass pound mass(lb_m)

Moles Ib_m-mole(Ib_mmol)

Time second (s)

Temperature Rankin (°R)

Electric current ampere (A)

Light intensity candela (cd)

Weight

cee.utm.mv

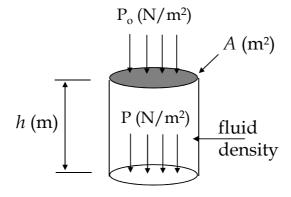
✓ Weight of an object is due to the gravitational force $W = mg/g_c$

- \checkmark The value of gravitational force (g) is varies to location of earth surface
- ✓ The value of the corresponding g/g_c at 45° latitude

$$g = 9.8066 \text{ m/s}^2$$
 $g/g_c = 9.8066 \text{ N/kg}$
 $g = 980.66 \text{ cm/s}^2$ $g/g_c = 980.66 \text{ dyne/g}$
 $g = 32.174 \text{ ft/s}^2$ $g/g_c = 1 \text{ lb}_f/ \text{ lb}_m$

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE


Pressure

ee.utm.my

Faculty of Chemical & Energy
Engineering

◆ Pressure is the ratio of a force to the area

- ✓ Units N/m², dynes/cm², and lb_f/in²
- √ the SI pressure unit is N/m² or called pascal (Pa)

- + Two most common temperature scales are defined using the freezing point (T_f) and boiling point (T_h) of water at 1 atm
 - ✓ Celsius (or centigrade) scale
 - T_f is assigned 0°C and T_b is 100°C
 - Absolute zero on this scale falls at -273.15°C
 - √ Fahrenheit scale
 - T_f is assigned 32°F and T_b is 212°F
 - Absolute zero on this scale falls at -459.67°F
 - ✓ The Kelvin and Rankin scale are defined at absolute value of Celsius and Fahrenheit

$$T(K) = T(^{\circ}C) + 273.15$$

 $T(^{\circ}R) = T(^{\circ}F) + 459.67$
 $T(^{\circ}R) = 1.8 T(K)$
 $T(^{\circ}F) = 1.8T(^{\circ}C) + 32$

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE

Degree (°) Definition As Temperature Interval

Faculty of Chemical & Energy Engineering

Degree as Temperature Interval

- + Consider the temperature interval between 0°C and 5°C
- ◆ There are 9°F and Rankin degree in this interval
- → An interval of 1°C or Kelvin contains 1.8°F or Rankin degree

Conversion factor for the interval

$$\frac{1.8 \, ^{\circ}\text{F}}{1 \, ^{\circ}\text{C}}$$
, $\frac{1.8 \, ^{\circ}\text{R}}{1 \, ^{\circ}\text{K}}$, $\frac{1 \, ^{\circ}\text{F}}{1 \, ^{\circ}\text{R}}$, $\frac{1 \, ^{\circ}\text{C}}{1 \, ^{\circ}\text{K}}$

Example

Find the number Celsius degrees between 32°F and 212°F

$$\Delta T(^{\circ}C) = \frac{(212 - 32)^{\circ}F}{1.8^{\circ}F} = 100^{\circ}C$$

To find the Celsius temperature corresponding to 32°F you cannot use this formula

$$T(^{\circ}C) = \frac{32^{\circ}F}{1.8^{\circ}F} \left| \frac{1^{\circ}C}{1.8^{\circ}F} \right|$$
Temp reading Temp interval

Dimensional Homogeneity

fcee.utm.m

- ♣ Valid equation must be dimensionally homogenous
- Both sides of equation must have same dimensions

$$V(m/s) = V_0(m/s) + g(m/s^2)t(s)$$

Example: Consider the the equation D(ft) = 3t(s) + 4

What is the dimension and unit for constants 3 and 4?

Sem 2 (2015/16)

PIONEERING TECHNOLOGY OF THE FUTURE

Dimensionless Quantity

Faculty of Chemical & Energy Engineering

* Dimensionless Quantity can be pure numbers $(2, \frac{1}{2}, 1.3 \text{ etc})$ or a multiplicative combination of variables with no net dimensions

Example:-

let
$$M(q) = D(cm) u(cm/s) \rho(q/cm^3)$$
 and $Mo = \mu(q/cm.s)$

and M/Mo = Dup /
$$\mu$$
 = $\frac{2\pi}{3}$ $\frac{2\pi}{3}$ $\frac{2\pi}{3}$

Thus, M/Mo or Dup/μ is also called a dimensionless group

What multiplicative combination of ρ (m), σ (m/s²) and t(s) would constitute a dimensionless group?