Chapter 2

Processes and Process Variables

Course Learning Outcomes

At the end of this course students will be able to

Calculate the composition in term of mole fractions when the composition of a mixture is given in term of mass fractions and vice versa.

Determine the average molecular weight of a mixture from the mass or molar composition of the mixture.

Density (ρ) is mass per unit volume
$\diamond \mathrm{kg} / \mathrm{m}^{3}, \mathrm{~g} / \mathrm{cm}^{3}$, and $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$
\diamond use to relate mass and volume

Specific Volume is volume per unit mass

$\diamond \mathrm{m}^{3} / \mathrm{kg}, \mathrm{cm}^{3} / \mathrm{g}$, and $\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}$
\rangle an inverse of density
Specific Gravity is the ratio of density ρ and $\rho_{\text {ref }}$

$$
\begin{aligned}
& \gtrless S G=\rho / \rho_{\text {ref }} \\
& \diamond \text { The reference } \rho \text { most commonly used is water at } 4.0{ }^{\circ} \mathrm{C} \\
& \diamond \rho_{\text {ref }}\left(\mathrm{H}_{2} \mathrm{O}, 4.0^{\circ} \mathrm{C}\right)=1.000 \mathrm{~g} / \mathrm{cm}^{3} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Specific gravity of some compounds are listed in Table B. 1

Mass, Volume and Density

\$ Example - Calculate the density of mercury in ${\mathbf{~} \mathbf{b}_{\mathbf{m}} / \mathrm{ft}^{3} \text { from a }}$ tabulated specific gravity, and calculate the volume in ft^{3} occupied by $\mathbf{2 1 5} \mathbf{~ k g}$ of mercury. (Table B. 1 pg 631)

Flow rate - rate at which material is transported through process line
\diamond Mass flow rate (mass/time) kg / s or lb / s
\diamond Volumetric flow rate (volume/time) $\mathrm{m}^{3} / \mathrm{s}$ or $\mathrm{ft}^{3} / \mathrm{s}$
The mass and volume is related by the fluid density (ρ)
The density (ρ) of a fluid can be used to convert known volumetric flow rate to the mass flow rate and vice versa

3.3 Chemical Composition

ϕ Atomic Weight - the mass of atom on a scale that assign ${ }^{12} \mathrm{C}$ a mass exactly 12.
\$ Molecular Weight -the sum of atomic weight of atoms that constitute a molecule

```
A Atomic weight of Oxygen (O)=16
Molecular Weight of molecular Oxygen (O2)=32
```

ϕ Gram-mole - amount whose mass is equal to its molecular weight
\diamond units used - gmol, lb_{m}-mole, kmol
\diamond If Molecular weight of a substance is M, then there are $M \mathrm{~kg} / \mathrm{kmol}, M$ $\mathrm{g} / \mathrm{mol}$ and $M \mathrm{lb}_{\mathrm{m}}$ /lb-mole of this substance
\diamond Carbon monoxide (CO) has a molecular weight of 28;

- 1 mol of (CO) therefore contains 28 g
- $1 \mathrm{lb}_{\mathrm{m}}$-mole of (CO) contains $28 \mathrm{lb}_{\mathrm{m}}$ and
- 1 kgmol of (CO) contains 28 kg

Example : 34 kg of ammonia $\left(\mathrm{NH}_{3}\right): M=17$ are equivalent to ? $\mathrm{kmol} \mathrm{NH}_{3}$

4 lb -moles of ammonia are equivalent to ? $\mathrm{lb}_{\mathrm{m}} \mathrm{NH}_{3}$

One gram-mole of any species contains 6.02×10^{23} (Avogadro's number) molecules of that species
\$ The molecular weight of a species can be used to relate the mass flow rate to corresponding molar flow rate
\& Example: If ammonia $\left(\mathrm{NH}_{3}\right): M=17$ flows through a pipeline at a rate of $100 \mathrm{~kg} / \mathrm{h}$, the molar flowrate of the equivalent is

If the output stream of a reactor contains NH_{3} flowing at a rate of 850 lb -moles/min, the corresponding mass flowrate is
ϕ Process streams occasionally contain more than one substance

To define the composition of mixture we need Mass Fraction :

$$
x_{A}=\frac{\operatorname{mass} \text { of } A}{\text { total mass }}\left(\frac{k g ~ A}{k g \text { total }} \text { or } \frac{g A}{g \text { total }} \text { or } \frac{\mathbf{l b}_{m} A}{\mathbf{l b}_{m} \text { total }}\right)
$$

Mole Fraction :

$$
y_{A}=\frac{\text { moles of } A}{\text { total moles }}\left(\frac{\mathrm{kmol} A}{\mathrm{kmol} \text { total }} \text { or } \frac{\operatorname{mol} A}{\text { mol total }} \text { or } \frac{\mathrm{lb}-\text { moles } A}{\mathrm{lb}-\text { moles total }}\right)
$$

The percent by mass of A is $100 x_{A}$, and the mole percent of A is $100 y_{A}$

Average Molecular Weight
 fcee.utm.my

\& Average molecular weight - Average of molecular weight of a mixture, \bar{M}
ϕ Base on mole fraction

$$
\bar{M}=y_{1} M_{1}+y_{2} M_{2}+\ldots=\sum_{\text {allcomponents }} y_{i} M_{i}
$$

- Base on mass fraction

$$
\frac{1}{\bar{M}}=\frac{x_{1}}{M_{1}}+\frac{x_{2}}{M 2}+\ldots=\sum_{\text {all components }} \frac{x_{i}}{M i}
$$

a) Calculate the average molecular weight $(\mathrm{kg} / \mathrm{kmol})$ of hydrocarbon gas mixture having the molar composition of 90% methane, 5% ethane and 5% propane.
b) Using the average molecular weight obtained from question (a), calculate the percent mass composition of methane, ethane and propane.
c) Calculate the average molecular weight ($\mathrm{lb}-\mathrm{mol} / \mathrm{lb}_{\mathrm{m}}$) of gas mixture having the mass composition of 76.7% nitrogen and 23.3% oxygen.

$$
\text { Question (a) Given: } \quad y_{C 1}=0.90, y_{C 2}=0.05, y_{c 3}=0.05
$$

$$
x_{\mathrm{N} 2}=0767, y_{02}=0.233
$$

Concentration

ϕ Mass concentration is the mass of component per unit volume of the mixture ($\mathrm{g} / \mathrm{cm}^{3}, \mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$)
\& Molar concentration is the number of moles of the component per unit volume of the mixture ($\mathrm{mol} / \mathrm{cm}^{3}, \mathrm{lb}$-mole $/ \mathrm{ft}^{3}$ or $\mathrm{kmol} / \mathrm{m}^{3}$)
ϕ Molarity is the value of the molar concentration of the solute expressed in gram-moles solute/liter solution

2-molar solution of A contains $2 \mathrm{~mol} A /$ liter solution
Concentration factor can be used to relate mass (molar) flow rate of a component of a continuous stream to the total volumetric flow rate of the stream
ϕ Given: 6 liters of 0.02 -molar solution of NaOH contains

6 liters	0.02 mol NaOH
	liter

A 0.5 molar aqueous solution of sulfuric acid flows into a process unit at a rate of $1.25 \mathrm{~m}^{3} / \mathrm{min}$. The specific gravity of the solution is 1.03. Calculate
(1) the mass concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{kg} / \mathrm{m}^{3}$,
(2) the mass flow rate of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in kg / s, and
(3) the mass fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$
ϕ Concentration of trace species (present in extremely small amount) in mixtures of gases or liquids
ϕ Defined as mass ratios (usually for liquid) or mole ratio (usually for gases)
\& Signify how many parts (e.g. gram, moles) of the species present per million or billion parts (gram, moles) of the mixture
ϕ If y_{i} is the fraction of component i in the gas or liquid mixture, then by definition

$$
\begin{aligned}
& p p m_{i}=y_{i} \times 10^{6} \\
& p p b_{i}=y_{i} \times 10^{9}
\end{aligned}
$$

The current OSHA limit for HCN in air is 10.0 ppm . A lethal dose of HCN in air (from the Merck Index) is $300 \mathrm{mg} / \mathrm{kg}$ of air at room temperature. How many $\mathrm{mg} \mathrm{HCN} / \mathrm{kg}$ air is the 10.0 ppm ? What fraction of the lethal dose is 10.0 ppm ?

Process and Process Equipment in Chemical Industry

Course Learning Outcomes
Faculty of Chemical \& Energy
Engineering

At the end of this course students will be able to

1. Describe chemical engineering process terms such as distillation, absorption, scrubbing, liquid extraction, crystallization, adsorption and leaching.
2. Explain various types of equipment involved in chemical engineering processes
ϕ Process - any operation that causes a physical or chemical change in a substance or a mixture of substances
ϕ Material enters a process is referred as input or feed
ϕ Material leaves is called as output or product
\& Process Unit is an apparatus for carrying out the process

| Raw materials \longrightarrow Process | \longrightarrow Products |
| :--- | :--- | :--- |
| | |

Adsorption Absorption
Distillation Extraction
Filtration
Stripping
Evaporation
Condensation
Crystallization
Heating
Cooling

Absorber
Adsorber
Boiler
Compressor
Decanter
Distillation column
Dryer
Heat exchanger Fan

Pump Scrubber Settler Stripper Evaporator Condenser Vaporizer Mixer
Reactor
ϕ Overall schematic of chemical process industry

\& Characteristic of Separation Process
Consist of
Separating Agent

(i) Heat
(ii) Solvent
(iii) Pressure
(iv) Gravity or Mechanical

ϕ Raw materials reacted to form products

- Mechanism
\diamond Material balance
\triangleleft Energy balance
ϕ Type of reactions
\diamond Exothermic (releasing heat)
\diamond Endothermic (absorbing heat)
\& Example

$$
\diamond \mathrm{S}+\mathrm{O}_{2} \cdots \mathrm{SO}_{2}
$$

Equipment : Reactor

ϕ There are two or more entering streams
ϕ There is only one exit stream, a "mixed" stream
\& The streams can be any phase, gas, liquid or solid.

The total balance is $A+B=C$

\& Involving material balance
\& The total balance is $A=B$ $+C$

Composition of Streams A, B and C is the same for each.
Splitter Exit 1, B
There is only one
independent material
balance since all
compositions are equal.

Involving material balance

Cooling

ϕ Process fluid being cooled
\& Heat being transferred from process fluid to the cooling fluid
Mechanism
\checkmark Heat balance
Equipment : Heat Exchanger, Cooler

Cooling Fluid Input (T_{1})

$$
T_{3}>T_{4}>T_{2}>T_{1}
$$

Process Fluid is being

heated | Hot Fluid |
| :---: |
| Input |
| $\left(T_{1}\right)$ |

Heat is being transferred being from Hotter Fluid to Process Fluid
Mechanism
\diamond Heat balance.
Equipment : Heat Exchanger

$$
T_{1}>T_{2}>T_{4}>T_{3}
$$

Separation

Separation by phase creation

Separation by phase addition

Separation by barrier

Separation by solid agent

Phase 1
Feed
 or gradient

Phase 2
Separation by Force Field or Gradient

Process	Separating agent(s)	Application(s)
Absorption	Solvent	Removal of CO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ from natural gas with amine solution.
Adsorption	Solid Adsorbent/resin	Separation of meta- and paraxylene, air separation, water demineralization
Distillation	Heat	Propylene/propane separation, production of gasoline from crude oil, and air separation.
Evaporation	Heat	Water desalination and manufactured of sugars.
Stripping	Stripping Gas	Removal of benzene from wastewaters.
Extraction	Solvent	Recovery of benzene, toluene, xylenes from gasoline reformate, removal of caffeine from coffee.
Drying	Heat	Drying of ceramics, plastics and foods.

Distillation

Raw Material (liquid or gas) is being separated by using

\checkmark Heating

\triangleleft Contact between 2 phases (vapor \& liquid)
Material and energy balance needs to solve simultaneously
ϕ If there is no packing and stages in the distillation column normally it is called flash column.
Use to separate raw oil to gasoline, tar and coke.

Distillation occurs because of the differences in the vapor pressure (volatility) of the components in the liquid mixture

Pressure reduction and/or heating will change the liquid into two phases: vapor and liquid.
ϕ Involving heat and energy balances

Example:

\triangleleft Recovery of water from sea water.

\& Heating mechanism will withdraw the water from the raw material
\& Process Fluid will become concentrated
ϕ Involving heat and energy balances

Equipment : Evaporator

* Water being withdrawn from raw material through heating mechanism
\& Involving heat and energy balances

Example

\diamond Drying of clothes
\diamond Process of making dry salted fish

Dried Produc \dagger

Extraction (Liquid-Liquid)
 fcee.utm.my

Multicomponent Liquid being separated using extraction technique by utilizing solvent
\rightarrow Terminology:
\diamond Component A : solute
\diamond Component C : solvent
\triangleleft Component B and C : solution
Involving material balance

Example:

Separation of Water (A), Chloroform (B), using Acetone (C)
¢ Mechanism
\diamond Solvent (C) will extract solute A from slurry B
\diamond Extract layer will consist of components A and C
\diamond Some of the solute A left behind with solid B is called raffinate layer
Involving material balance
\& Example
\diamond production of vegetable oils where organic solvent such as hexane, acetone and ether are being used
\diamond extraction of oil from peanuts, soybeans, sunflower seeds and palm kernel.

Absorption (Scrubber)

Solute (A) being absorbed from gas phase (B) to liquid phase (C)

Involving material balance

ϕ Example:
$\checkmark \mathrm{SO}_{3}$ being absorbed from air onto water
$\checkmark \mathrm{SO}_{3}$ dissolved in water will be treated as wastewater

Gas (B)

ϕ Solute (A) being absorbed from liquid phase (A, B) to vapor phase (C)
ϕ Involving material balance and energy balance

Example:

\checkmark Steam stripping of naphtha, kerosene, and gas oil side cuts from crude distillation units to remove light ends.

Humidifier

ϕ The feed Gas (A) is not saturated
ϕ Liquid (B) is evaporated in the process unit
\& The vapor exit (A and B) product may or may not be saturated
\& Involving material balanceExample:
\diamond Humidification of air using $\mathrm{H}_{2} \mathrm{O}$

Volatile Feed
Liquid (B)
ϕ Feed stream contain a condensable component (A) and a non-condensable component (B)
ϕ Condensate is a liquid with the condensable component (A) only.
ϕ The dry gas exit stream is saturated with the condensable component (B) at the temperature and pressure of the process.
\$ Involving material balance

Adsorption

ϕ Process whereby the solid (adsorbent) absorbing liquid from surrounding areas.
ϕ Dry gas is the product
ϕ For separation between gases, pressure is being used to change the phases of the components.
ϕ Involving material balance
\& Example
\checkmark Separation of water from air using alumina silica. To decrease the humidity of the air.
\$ Saturated solution temperature being lowered down to produce crystal
Mechanism
Material Balance
\diamond Heat Balance

Example:

\diamond Crystallization of p-xylene from p -xylene and m -xylene mixture
\diamond Crystallization of sugar from sugar solution.

Product
(crystal)

Filtration

\$ Solid being separated from slurry that contains liquid and solid.

- Mechanism
\diamond Material Balance

Example:

\diamond Separation of palm oil from slurry that contains fiber and oil after the screw press.
\checkmark Process of making coconut milk

