

• System (overall balance) Boundary A (3 inputs, 3 outputs)

- Sub-system (balance on each process unit)
 - Stream mixer Boundary B (2 inputs, 1 output)
 - Unit 1 (e.g. reactor)Boundary C (1 input, 2 outputs)
 - Splitter Boundary D (1 input, 2 outputs)
 - Unit 2 (e.g. mixer) Boundary E (2 inputs = 1 output)

Faculty of Petroleum & Renewable Energy Engineering

Strawberries contain about 15 wt% solids (assuming sugar) and 85 wt% water. To make 1 Ibm of strawberry jam, equal mass of crushed strawberries and sugar are mixed in a mixer. The mixture is then fed and subsequently heated in an evaporator to remove water until the product contains 25 wt% water.

- a. Draw and label a flowchart of this process.
- b. Classify the type of process involved and name the types of process equipment used.
- c. Do the degree-of-freedom analysis to prove that the problem can be solved.
- d. Calculate the mass (kg) of strawberries is required?
- e. Calculate the percent mass of water is evaporated?.

Seawater containing 3.50 wt% salt passes through a series of 5 evaporators. Roughly equal quantities of water are vaporized in each of the 5 units and are then condensed and combined to obtain a product stream of fresh water. The brine at the outlet of the last evaporator contains 5.00 wt% salt.

- a) Draw a flowchart of the process and label all the streams entering and leaving the evaporators.
- b) Calculate the fractional yield of fresh water from the process (kg H₂O recovered / kg H₂O in process feed)
- c) Calculate the weight percent of salt in the solution leaving the fourth evaporator.
- d) It is desired to achieve 9000 kg/h of fresh water from seawater using the same process. Calculate the mass flow rate of the seawater feed.

(Using boundary 2) www.utm.my/petroleum
c) Calculate the weight percent of salt in the solution leaving the fourth evaporator.
Sem 2 (2015/16) PIONEERING TECHNOLOGY OF THE FUTURE 23
 d) It is desired to achieve 9000 kg/h of fresh water from seawater using the same process. Calculate the mass flow rate of the seawater feed.

Additional Example – Sugar Refinery

Faculty of Petroleum & Renewable Energy Engineering

A simplified flow sheet for the manufacture of sugar is shown. Sugarcane is fed to a mill where a syrup is squeezed out, and the resulting "bagasse" (D) contains 80 wt% pulp and the remaining water and sugar. The syrup (E) containing 13 wt% water, 14 wt% sugar and finely divided pieces of pulp is fed to a screen which removes all the pulp and a small amount of sugar to produce a clear syrup (H) containing 15 wt% sugar. The evaporator makes a "heavy" syrup (K) containing 40 wt% sugar and the crystallizer produces 1000 kg/h of pure sugar crystals (M). (Note: In average, sugarcane contains 16 wt% sugar, 25 wt% water and the rest is pulp)

- a. perform the degree of freedom analysis of the system and the process units
- b. Find the water removed in the evaporator, kg/h
- c. Find the mass fractions of the components in the waste stream G.
- d. Find the rate of feed of sugarcane to the unit, kg/h
- e. What percentage of sugar in feed is lost with the bagasse?
- f. Is this an efficient operation? Explain why and why not.

Solutio	n Additional working session - Sugar Refinery www.utm.my/petroleum	ım & Energy
Mass balance arou	nd screen	
Mass balance arou	nd Mill	
Sem 2 (2015/16)	PIONEERING TECHNOLOGY OF THE FUTURE	29
	Facult	v of
	Additional working session – Sugar Refinery www.utm.my/petroleum	Energy

In textile industry, it is desired to make caustic soda solution containing 24% NaOH by mass for a mercerization process. Due to the very high heat of dissolution of caustic soda in water, the solution is prepared as follows; First in a dissolution tank caustic soda of 50 wt% NaOH was prepared by mixing 100 kg of solid NaOH with water. It was then fed to the dilution tank where a fraction of feed water is added to produce the desired solution.

- a) Calculate the amount of water required
- b) Calculate the amount of desired solution produced.
- c) Calculate the amount of 50 wt% NaOH solution produced.
- d) Calculate the amount of feed water that is bypassed to the dilution tank.
- e) Calculate the ratio of water that is bypassed to the dilution tank to that is fed to the process.

