

- Stoichiometry
- The theory of proportions in which chemical species combine with one another
- Stoichiometric equation

- Write the stoichiometric reaction of gaseous methane with pure oxygen to produce carbon dioxide and water vapour
- Stoichiometric Ratio :
- Ratio of stoichiometric coefficients can be used as a conversion factor.
- It can be used to calculate the amount or reactant (or product) that was consumed (or produced) given another quantity of another reactant or product that participated in reaction.

Chemical Reaction Stoichiometry \qquad \& Energy
Engineering

Stoichiometry equation: $\quad \underset{\substack{\text { (A) }}}{2 \mathrm{SO}_{2}}+\underset{\text { (B) }}{\mathrm{O}_{2}} \rightarrow \underset{\text { (C) }}{2 \mathrm{SO}_{3}}$
Stoichiometry ratio
; 2 mol (or kmol, Ib-mole) SO_{3} produced 1 mol (or kmol, lb -mole) O_{2} reacted 2 mol (or kmol, Ib-mole) SO_{2} reacted 2 mol (or kmol, lb-mole) SO_{3} produced
produced=generated ; reacted=consumed
Two reactants, A and B are in Stoichiometry proportion when:

$$
\frac{\text { mole A present }}{\text { mole B present }} \quad=\begin{gathered}
\text { Stoichiometry proportion ratio obtained from the } \\
\text { balanced equation }
\end{gathered}
$$

Chemical Reaction Stoichiometry

For the production of $1600 \mathrm{~kg} /$ hour of SO_{3}, calculate the mole and mass flowrate of oxygen needed :

Limiting and Excess Reactants
ww.tce, um.m.
Consider the reaction

$$
\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

1) Write the stoichiometric equation of the above reaction?
2) What is the stoichiometric coefficient of CO_{2} ?
3) What is the stoichiometric ratio of $\mathrm{H}_{2} \mathrm{O}$ to O_{2} ? (Include units)
4) How many lb-moles of O_{2} react to form 400 lb -moles of CO_{2} ? (Use a dimensional equation)
5) One hundred g -moles of $\mathrm{C}_{4} \mathrm{H}_{8}$ are fed into a reactor, and 50% reacts. At what rate is water formed?
\checkmark Limiting reactants

- Reactant that its present is less than its stoichiometric proportion relative to every other reactant
- Reactant that would be first fully consumed / reacted
\checkmark Excess reactants
- Reactant that if it is more than its stoichiometric proportion relative to every other reactant
- Reactant that would have some unconsumed / unreacted after the reaction is complete

Limiting and Excess Reactants Example www.fce..ummy

Limiting reactant will disappear first for a complete reaction

	$2 \mathrm{SO}_{2}$	+	O_{2}	\rightarrow	$2 \mathrm{SO}_{3}$
n_{i}	200 mol		100 mol		0 mol
n_{f}	0 mol		0 mol		200 mol

Extent of Reaction

In a reactor H_{2} reacts with Br_{2} to form HBr . Suppose we start with 100 mol of $\mathrm{H}_{2}, 50 \mathrm{~mol}$ of Br_{2} and 30 mol of HBr .
a) Which reactant is limiting?
b) What is the percentage excess of other reactant?
c) If 30 mol of H_{2} reacts with Br_{2} to form HBr , calculate the molar compositions of the product?

If 30 mol of H_{2} reacts with Br_{2} to form HBr , calculate the molar compositions of the product?

$$
\begin{aligned}
& \left(n_{H_{2}}\right)_{\text {final }}=\left(n_{H_{2}}\right)_{i_{\text {initial }}}-\xi \\
& \left(n_{B r_{2}}\right)_{\text {final }}=\left(n_{B r_{2}}\right)_{\text {initial }}-\xi \\
& \left(n_{H B r}\right)_{\text {final }}=\left(n_{H B r}\right)_{\text {initial }}+2 \xi
\end{aligned}
$$

ξ is the extent of reaction (30 mol of H_{2} reacted)

Recall stoichiometric coefficient (v_{i}) :-
$v_{i}=$ negative for reactant
$v_{i}=$ positive for products
Example

Output = Input + Generation - Consumption

$$
\begin{aligned}
& \left(n_{H_{2}}\right)_{\text {final }}=\left(n_{H_{2}}\right)_{\text {initial }}-\xi \\
& \left(n_{B r_{2}}\right)_{\text {final }}=\left(n_{B r_{2}}\right)_{\text {initial }}-\xi \\
& \left(n_{\text {HBr }}\right)_{\text {final }}=\left(n_{H B r}\right)_{\text {initial }}+2 \xi \\
& \xi=30 \mathrm{~mol} \mathrm{H}_{2} \text { reacted } \\
& \left(\mathrm{n}_{\mathrm{H}_{2}}\right)_{\text {final }}=100-30=70 \mathrm{~mol} \mathrm{H}_{2} \\
& \left(\mathrm{n}_{\mathrm{Br}_{2}}\right)_{\text {final }}=50-30=20 \mathrm{~mol} \mathrm{Br} 2 \\
& \left(\mathrm{n}_{\mathrm{HBr}}\right)_{\text {final }}=30+2(30)=90 \mathrm{~mol} \mathrm{HBr}
\end{aligned}
$$

The oxidation of ethylene to produce ethylene oxide proceeds according to the

equation: \quad\begin{tabular}{c}
$2 \mathrm{C}_{2} \mathrm{H}_{4}$

ethylene

$+\underset{\text { oxygen }}{\mathrm{O}_{2}} \cdots \cdots \quad$

$2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

ethylene oxide
\end{tabular}

The feed to the reactor contains $100 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ and $100 \mathrm{kmol} \mathrm{O}_{2}$.
(1) Which reactant is limiting?
(2) What is the percentage excess of the excess reactant?
(3) If the reaction proceeds to completion, how much of the excess reactant will be left; how much $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ will be formed; and what is the extent of reaction?
(4) If the reaction proceeds to a point where the fractional conversion of the limiting reactant is 50%, how much of each reactant and product is present at the end, and what is the extent of reaction?
(5) If the reaction proceeds to a point where $60 \mathrm{~mol}_{\mathrm{O}_{2}}$ are left, what is the fractional conversion of $\mathrm{C}_{2} \mathrm{H}_{4}$? The fractional conversion of O_{2} ? The extent of reaction?

In the Deacon process for the manufacture of chlorine $\left(\mathrm{Cl}_{2}\right)$, hydrochloride acid (HCl) and oxygen $\left(\mathrm{O}_{2}\right)$ react to form Cl_{2} and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Sufficient air (21 mole $\% \mathrm{O}_{2}$, $79 \% \mathrm{~N}_{2}$) is fed to provide 35% excess oxygen and the fractional conversion of HCl is 85%. Calculate the mole fractions of the product stream components using the extent of reaction.
i) Draw a process flow chart
ii) Basis :
Foculty of Chemical
$2 \mathrm{HCl}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
III. Total moles of air required with 35% excess O_{2}
(o) Faculty of Chemical
or $2 \mathrm{HCl}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
or
(0) Faculty of Chemical
V. Extent of Reaction $\quad 2 \mathrm{HCl}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$

Sem 2 (2015/16) PIONEERING TECHNOLOGY OF THE FUTURE 23

Chemical Equilibrium

Chemical Equilibrium

Reversible reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})<===>\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
\checkmark The rates of forward and reverse reactions are identical when the equilibrium is reached
\checkmark The compositions of product and reactant do not change when the reaction mixture is in chemical equilibrium

Irreversible reaction: $2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2}===>2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
\checkmark The reaction proceeds only in a single direction (reactants \rightarrow products)
\checkmark The reaction ceases and hence equilibrium composition is attained when the limiting reactant is fully consumed.

Chemical Equilibrium State

Mass Balance involving Process in Chemical Equilibrium State

$$
a A+b B \Leftrightarrow==>c C+d D
$$

Extent of Reaction, $\xi \ldots . . . \quad \mathbf{n}_{\text {out }, \mathbf{i}}=\mathbf{n}_{\text {in }, \mathbf{i}} \pm \mathbf{v}_{\mathbf{i}} \boldsymbol{\xi}$
$\mathbf{K}(\mathbf{T})=\frac{\mathbf{y}_{\mathrm{C}} \mathbf{y}_{\mathrm{D}}}{\mathbf{y}_{\mathrm{A}} \mathbf{y}_{\mathrm{B}}}=\frac{\left[\left(\frac{\mathbf{n}_{\text {out }}}{\mathbf{n}_{\mathrm{T}}}\right)\left(\frac{\mathbf{n}_{\text {out } \mathrm{D}}}{\mathbf{n}_{\mathrm{T}}}\right)\right]}{\left[\left(\frac{\mathbf{n}_{\text {out, }}}{\mathbf{n}_{\mathrm{T}}}\right)\left(\frac{\mathbf{n}_{\text {out }, \mathrm{B}}}{\mathbf{n}_{\mathrm{T}}}\right)\right]}$

$$
\begin{aligned}
& K(T)=\frac{y_{C} y_{D}}{y_{A} y_{B}} \\
& y_{c}=\frac{n_{\text {out }, C}}{n_{T}}, y_{c}=\frac{n_{\text {out }, D}}{n_{T}}, y_{c}=\frac{n_{\text {out }, A}}{n_{T}}, y_{c}=\frac{n_{\text {out }, B}}{n_{T}} \\
& n_{T}=n_{A}+n_{B}+n_{C}+n_{D}
\end{aligned}
$$

Working Session IV - Q\#5
 Example 4.6-2

If the water-gas shift reaction

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})<===>\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Proceeds to equilibrium at a temperature $T(K)$, the mole fractions of the four reactive species satisfy the relation

$$
\frac{y_{\mathrm{co}_{2}} y_{\mathrm{H}_{2}}}{\mathbf{y}_{\mathrm{co}} \mathrm{y}_{\mathrm{H}_{2} \mathrm{O}}}=\mathrm{K}(\mathrm{~T})
$$

where $K(T)$ is the reaction equilibrium constant. At $T=1105 \mathrm{~K}, \mathrm{~K}=1.0$. Suppose the feed to a reactor contains 1 mol of $\mathrm{CO}, 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$ and no CO_{2} or H_{2}, and the reaction mixture comes to equilibrium at 1105 K . Calculate the equilibrium composition and the fractional conversion of the limiting reactant.

PIONEERING TECHNOLOGY OF THE FUTURE

Multiple reaction ：one or more reaction

$\mathrm{y}_{\mathrm{CO}}=\left(1.00-\xi_{\mathrm{e}}\right) / 3.00$
$y_{\mathrm{CO} 2}=\xi_{\mathrm{e}} / 3.00$
$y_{\mathrm{H} 2}=\xi_{\mathrm{e}} / 3.00$
2．Substitute mole fractions from（1）in the equilibrium reaction
$====>$（1）
（1）
－Main Reaction
－Side Reaction ：undesired reaction
－Example ：－Production of ethylene（dehydrogenation of ethane）
Main reaction \quad－ーーーーーー

$$
\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \quad \text { How do you control }
$$

$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4}$
－Design Objective
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{CH}_{4} \rightarrow$ ，
－Maximize desired products $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$
Learn more in

－Yield
（moles of desired product formed at given fractional conversion of limiting reactant）
（moles of desired product formed，assuming no side reactions and the limiting reactant is completely reacted）
－Selectivity
$\frac{\text {（moles of desired product formed）}}{\text {（moles of undesired product formed）}}$
－Calculation of molar flow rates for multiple reactions
$\boldsymbol{n}_{\boldsymbol{i}}=\boldsymbol{n}_{i \boldsymbol{\theta}}+\sum_{j} v_{i j} \xi_{j}$
$+v_{i j}$ if i is a product in reaction j
$-v_{i j}$ if i is a reactant in reaction j
$v_{i j}=0$ if i does not appear in reaction

Consider the following pair of reactions
a) The fractional conversion of A.

```
\(A \rightarrow 2 B\) (desired)
\(A \rightarrow C\) (undesired)
```

Suppose 100 mol of A is fed to a batch reactor and the final product contains 10 mol of $A, 160 \mathrm{~mol}$ of B and 10 mol of C. Calculate
a) The fractional conversion of A.
b) The percentage yield of B.
c) The selectivity of B relative to C.
d) The extents of the first and second reactions.

c) The selectivity of B relative to C.
d) The extents of the first and second reactions.
$A \rightarrow 2 B$ (desired)rrn 1
$A \rightarrow C$ (undesired) \qquadrxn 2

Working Session IV - Q\#7

Consider the following pair of reactions

$4 A+5 B \rightarrow 4 C+6 D$	(desired)
$4 A+6 C \rightarrow 5 E+6 D$	(undesired)

Component A undergoes complete reaction, however, 70% takes in the desired reaction and the balance is the undesired reaction. Based on a feed stream containing $1000 \mathrm{kmol} / \mathrm{h} A$ and $1750 \mathrm{kmol} / \mathrm{h} \mathrm{B}$
a. What is the limiting reactant? What is the excess reactant?
b. What percentage is the excess reactant in excess?
c. Write down the mass balance of each component using the extent of reaction
d. Calculate the molar flow rate of each component in the product stream
e. Calculate the percentage yield of C
f. Calculate the selectivity of C relative to E
g. What percentage of the C component produced by the desired reaction is consumed by the undesired reaction?

Working Session IV - Q\#8

Methane $\left(\mathrm{CH}_{4}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$ react in the presence of a catalyst to form formaldehyde (HCHO). In a parallel reaction methane is oxidized to carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$:

$$
\begin{aligned}
& \mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Suppose $100 \mathrm{~mol} / \mathrm{s}$ of equimolar amount of methane and oxygen is fed to a continuous reactor. The fractional conversion of methane is 0.9 and the fractional yield of formaldehyde is 0.855 . Calculate the molar composition of the reactor output stream and the selectivity of formaldehyde production relative to carbon dioxide production.

sOLVE AT YOUR OWN TIME

