

- draw a correct free body diagram
- write the equations of equilibrium corresponding to the free-body diagrams.

PIONEERING TECHNOLOGY OF THE FUTURE

solve the equilibrium equations.

SKPG1313 - Chapter 1

3. **Resolution** of a force into components

forces acting on the particle.

DEFINITIONS

SCALAR - A quantity characterized by a positive or negative number is called a scalar. Examples of scalars used in Statics are mass, volume or length.

VECTOR - A quantity that has both magnitude and a direction. Examples of vectors used in Statics are position, force, and moment.

- **FORCE**: action of one body on another; characterized by its 1) point of application, 2) magnitude and 3) direction
- **Direction** of a force: *line of action* and *sense* of the force ٠
- Line of action: infinite straight line along which the force act; characterized by the angle it forms with some fixed axis
- Sense of the force: indicated by an arrowhead
- Force represented by a segment of that line

SKPG1313 - Chapter 1

PARALLELOGRAM RULE

PIONEERING TECHNOLOGY OF THE FUTU

aculty of Chemical

aculty of Chemical 8

2.3 VECTOR

SKPG1313 - Chapter

10 lb

- Forces P and Q acting on a particle A may be **replaces** by a single force R; has the same of the particle \Rightarrow resultant force
- By constructing a parallelogram, the diagonal that passes through A represents the resultant \Rightarrow parallelogram law for the additional of two forces

• Vectors: mathematical expression possessing magnitude and direction; which add according to parallelogram law.

10 lb

- Two vectors; have the same magnitude and direction are said to be *equal* (a)
- Two vectors; have the same magnitude, parallel lines of action and opposite sense are *equal* and *opposite*. (b)

2.4 ADDITION OF VECTORS

Continued... Faculty of Chemical & Energy Engineering

- Vectors add according to the parallelogram law (PL)
- The sum of two vectors P and Q ⇒ attach the two vectors to the same point A and using PL; the diagonal passes through A represents the sum of vectors P and Q; denoted by P+Q
- The sum does not depend upon the order of the vectors; the addition of two vectors is commutative: P + Q = Q + P

- **TRIANGLE RULE**: Alternate method for determining the sum of two vectors
- Draw only half of PL
- The sum of the two vectors; by arranging P and Q in *tip-to-tail fashion* by connecting the *tail of P* with the *tip of Q*

SOLUTION

Graphical solution - A parallelogram with sides equal to \mathbf{P} and \mathbf{Q} is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the

aculty of Chemical a

SKPG1313 - Chapter 1

Graphical solution - A triangle is drawn with **P** and **Q** head-to-tail and to scale. The magnitude and direction of the resultant or of the third side of the triangle are measured,

parallelogram are measured,

SOLUTION

PIONEERING TECHNOLOGY OF THE FUTURE

2.6 RESOLUTION OF A FORCE INTO COMPONENTS

•

aculty of Chemical

- A single force F acting on a particle may be replaced by two or more forces; which have the same effect.
 - The forces are called *components*; the process of substituting them is called *resolving the force F into components*
- For each force F; exist an infinite number of possible set of components
 - Numbers of ways in which a given force F maybe resolved into two components

2.6.1 RESOLUTION OF A FORCE

- One of the two components; (if P is known)
 - The second component; Q is obtained by applying the triangle rule; joining the tip P to the tip of F; the magnitude and direction of Q are determined graphically or by trigonometry
 - Once Q has been determined, both components of P and Q should apply at A

Faculty of Chemical &

Enerav Enaineerina

- When the resultant of all the forces acting on a particle is zero; the particle is in equilibrium.
- Particle; acted by two forces will be in equilibrium if the two forces have the same magnitude, same line of action and opposite sense (see Figure a)).
- Particle; acted by three forces or more will be in equilibrium if the resultant of all the forces is determined by polygon rule (tipto-tail fashion) (see Figure b)).
- To express algebraically that a particle is in equilibrium; the two rectangular comps. R_x and R_y of the resultant are zero;

$$\Sigma F_x = 0$$
 $\Sigma F_y = 0$

or is moving in a straight line with constant speed.

PIONEERING TECHNOLOGY OF THE FUTURE

(in equilibrium) and all the forces acting on it \Rightarrow

free body diagram (see Fig. b) page 35).

Continued...

 $F_1 = 300 \text{ lb}$

 $F_4 = 400 \text{ lb}$

100 lb

/ 100 lb a)

 $F_4 = 400 \text{ lb}$

 $F_3 = 200 \text{ lb}$

 $F_1 = 300 \text{ lb}$

 $F_2 = 173.2$ lb

Faculty of Chemical & nerav Engineering

 $F_2 = 173.2 \text{ lb}$

 $F_3 = 200 \text{ lb}$

Continued..

Cables are assumed to have <u>negligible weight</u> and they cannot stretch. They can only support tension or pulling (*you can't push on a rope*). Pulleys are assumed to be <u>frictionless</u>. A continuous cable passing over a frictionless pulley must have tension force of a constant magnitude. The tension force is always directed in the direction of the cable. 1) Draw Outlined Shape - Imagine the particle isolated or cut "free" from its surroundings

Faculty of Chemical 8 Energy Engineer<u>ing</u>

- 2) Show All Forces Include "active forces" and "reactive forces"
- **3) Identify Each Force -** Known forces labeled with proper magnitude and direction. Letters used for unknown quantities.

aculty of Chemical a

- These equation may be solved for no more than two unknowns; similarly the force triangle law.
- Problems with more than two unknowns may be need more than one FBD to solve.

PIONEERING TECHNOLOGY OF THE FUTUR

PIONEERING TECHNOLOGY OF THE FUTUR

48

Faculty of Chemical &

Enerav Enaineerina

SKPG1313 - Chapter 1

SKPG1313 - Chapter

 Reactive Forces - result from constraints or supports and tend to prevent motion.

FORCE TYPES

Free-Body Diagram

- 1. Establish the x, y axes in any suitable orientation.
- 2. Label all known and unknown force magnitudes and directions on the FBD.
- 3. The sense of an unknown force may be assumed.

PIONEERING TECHNOLOGY OF THE FUTUR

IN CLASS HW

SKPG1313 - Chapter

Continued....

Faculty of Chemical &

Enerav Engineering

Equations of Equilibrium

1. Apply equations of equilibrium.

$$\sum F_x = 0$$
 and $\sum F_y = 0$

PIONEERING TECHNOLOGY OF THE FUTUR

- 2. Components of force are positive if directed along a positive axis and negative if directed along a negative axis.
- 3. If solution yields a negative result the force is in the opposite sense of that shown on the FBD.

The block has a weight of 20 lb and is being hoisted at uniform velocity. Determine the angle θ for equilibrium and the required force in each cord.

culty of Chemical

Faculty of Chemical 8

nerav Engineering

SKPG1313 - Chapter

SKPG1313 - Chapter 1

IN-CLASS HW

Faculty of Chemical &

IN-CLASS HW

Faculty of Chemical & Enerav Enaineerina

Two flower pots as in the figure, are stably suspended using a cable system. Calculate the tensions on cables AB, BC, CD and CE.

Enerav Enaineerina

Determine the stretch in springs AC and AB for equilibrium of the 2-kg block. The springs are shown in the equilibrium position.

SKPG1313 - Chapter 1

