

## **Nuclear Weak Responses By Measuring Nuclear Gamma Rays From Muon Capture Reactions** (MuSIC Collaboration)

IZYAN H. Hashim, Hiroyasu EJIRI, Yuko HINO, Akira SATO, Tatsushi SHIMA, Yoshitaka KUNO, Yuki MATSUMOTO, Kazuhiko NINOMIYA, Hideyuki SAKAMOTO, Atsushi SHINOHARA, Keiji TAKAHISA, and NAM H. Tran

## Objectives;

- 1. Nuclear weak  $\beta^+$  responses by measuring  $\mu X$ , prompt and delayed  $\gamma$  rays from  $\mu$  capture reactions.
- 2. To study the gross distribution of the weak strength distribution by measuring delayed  $\gamma$  rays from isotopes produced by ( $\mu$ ,  $n\gamma$ ) on <sup>100</sup>Mo.
- 3. The feasibilities of weak nuclear responses study by the  $\mu$  from MuSIC.



|      | 95               | $^{m}Nb(86.6)-^{*}Nb(839.28)$ | 204.1, */65.8         |  |
|------|------------------|-------------------------------|-----------------------|--|
|      | 92               | Nb(244.8)                     | 934.5                 |  |
|      | 90               | *Nb(14.6)-*Zr                 | 141.2,1129.2, *2319.0 |  |
|      | 89               | Nb(1.2)-*Zr(78.4)             | 507.4, 587.8, *908.9  |  |
|      | 87               | Y(13.4,79.8)                  | 380.8, 388.5, 484.8   |  |
|      | Delay            | ed Gamma Ray Spectrum         |                       |  |
| -99N |                  | ed Gamma Ray Spectrum         |                       |  |
|      | <sup>97</sup> Zr | <sup>0</sup> Nb               |                       |  |
|      |                  |                               |                       |  |
|      |                  | 96Nb                          | 90Nb                  |  |
|      |                  | 96Nb                          | <sup>90</sup> Nb      |  |





## **Concluding Remarks**

- $0\nu\beta\beta$  was a unique probe to study the fundamental properties of neutrinos beyond the standard model.
- We can determine the  $\beta$ + responses by measuring the delayed gamma ray following  $\bullet$ the muon capture reaction.
- The strength distribution as a function of excitation energy reproduces the relative population of each Nb isotope.
- The GR like distribution was observed which was centered at 8-10MeV.  $\bullet$
- The present MuSIC beam line was not yet completed, thus the transport line is not long enough to avoid pion contaminations.

## References

- 1. 1. H.Ejiri, Phys. Rep. 338 (2000) 265; J.Phy. Soc. Jpn. 74 2005 2101.
- 2. J. Vergados, H. Ejiri and F. Simkovic, Report Prog. Physics, 75 106301 2012.
- 3. H.Ejiri, Czech J.Phys. 56 (2006) 459.
- 4. A.Sato, Y.Kuno, et al. Proc of IPAC2011, EPS-AG 820 (2011).
- 5. H.Ejiri. Proc. Of MEDEX11, AIP Con. Proc. 1417 (2011) 37.
- 6. D.F Measday. Physics Report 354 (2001) 243-409.
- 7. B.Goulard, H.Primakoff. Phys. Rev. C 10 (1974) 2034-2044.
- 8. S.R.Elliot Modern Phys. Lett. A 27 (2012) 23-40.
- 9. T.Suzuki, D.F. Measday et al. Phys. Rev. C 35 (1987) 2212-2224.
- 10. J.Suhonen, M. Kortelainen, (2006) Czech J.Phys. 56 (2006) 512.
- 11. H.Ejiri, M.J.A. de Voigt: Gamma-ray and electron spectroscopy in nuclear physics (1989). 12. H.Ejiri, I.H.Hashim, et al. (2013) Journal Phys. Soc. Japan 82 (2013) 044202