
 
 

Naval Architecture  Notes 

© Omar bin Yaakob, July 2008                                                                                                         9 

 

Chapter 3 

Hydrostatics and Floatation 
 

 

3.1 Archimedes Law of Floatation 
 

Archimedes (born 287 B.C) Law states that  
“An object immersed in a liquid experience a lift equivalent to the mass of 

liquid the object displaces.” 
 

A man immersed in water for example will feel a weight reduction because part of 
the weight is supported by buoyancy. This buoyancy is equal to the weight of water 
displaced by his immersed body. 
 
 

3.2 Reduction of Weight of Immersed Objects 
 

The maximum buoyancy is when the object is fully immersed and this equal the 
total outside volume of the object multiplied by the density of the fluid. When 
maximum available buoyancy is less than the weight of the object, the object will 
sink. That is why an anchor will sink to the bottom. However the object will still feel 
the weight reduction.  
 

Example 3.1: 

 
Consider a cuboid   having dimensions 1m x 1m x 2m. If it weighs 3 tonnes in air, 
what is its apparent weight in water density 1000 kg/m3? 
 
If the object is immersed in liquid, it will 
displace liquid around it equivalent to its 
external volume.  

 
In this case, displaced volume = 1 x 1 x 2  = 
2 m3 
This is the volume of liquid pushed aside by 
the cuboid. 

 
Archimedes says that the weight of this 
object in liquid is reduced due to the support 
given by liquid on the object. The apparent 
weight equals the weight in air minus the 
reduction in weight of the object; or the 
buoyancy i.e. 

 
 

Buoyancy  = volume diplacement x density of liquid  
= mass displacement  
= 2m3 x 1000 kg/m3 
= 2000 kg 
= 2 tonnes 
= reduction in weight 

 

? tonne 

2m3 
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Apparent weight = weight in air – buoyancy 
 

Since the object weighs 3 tonne in air, it will apparently weigh only 1 tonne in 
water. 
 

 
 
 
 

3.3   What make a Ship Floats? 
 

When the maximum available buoyancy is more than the weight of the object, the 
object will rise to the surface. It will rise to the surface until the weight of the object 
balances the buoyancy provided by its immersed portions. When the object is 
floating, its buoyancy is just enough to support its weight. At that point: 
 

Total weight W = Buoyancy = Displaced volume x  liquid 
 

This principle explains why a steel or concrete ship can float. As long as the outer 
shell of the ship can provide enough volume to displace the surrounding water 
exceeding the actual weight of the ship, the ship will float. A floating ship is such 
that the total weight of its hull, machinery and deadweight equals to the weight of 
water displaced by its outer shell. If, while it is floating weights are added until the 
total weight exceeds the maximum buoyancy provided by the outer shell of the ship, 
the ship will sink. 

 
 

 

3.4   Effect of Density 
 

An object experiences buoyancy force equivalent to the weight of fluid it displaces. 
For a particular object, the buoyancy force will depend on the density of the fluid, 
since its volume is constant. This explains for example why a bather will feel more 
buoyant while swimming at sea compared to in the river or lake. Also, a floating 

Exercise 3.1 
 
    Do similar calculations to find out the apparent weight in oil (density 0.85 

tonne/m3) and muddy water (density 1.3 tonne/m3) and mercury  (density 13,000 
kg/m3) 

 
 

Fluid 
 

Density 
(           ) 

Fluid Support 
 (           ) 

Apparent Weight 
(                 ) 

Oil    

Fresh Water    

Muddy Water    

Mercury    

 
 

What can be concluded about relationships between buoyancy of objects 

and the densities of fluids in which they are immersed? 
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object of constant weight will sink at a deeper draught in freshwater compared to in 
seawater. 
 

Total weight W = Buoyancy = Displaced volume x  liquid 
 
Since weight does not change, the buoyancy is also constant. So displaced volume 
will be inversely proportional to the density of fluid.  For floating object, this will 
determine its level of sinkage or draught.  

 

 

3.5   Some Simple Problems 
 

The fact that a floating object displaces fluid equivalent to its weight can be used to 
solve a number of problems.  
 

Total weight W = Buoyancy   = Displaced volume x  water 

 

 From this equation, we can obtain the weight of the object if we know the volume of 
water displaced.  On the other hand, if we know its weight, we can work out its 
displaced volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Just to understand the concept, consider a floating box of dimension L x B x D, 
floating at a draught T.  
 
 

CASE 1: We know its weight, we can find its draught 
 
In this case, we know the weight of the object, we can find the displaced volume: 

 
 Displaced volume = W 

                                                          water 
 
i.e. for a box-shaped vessel: 
 
 Displaced volume = L x B x T 
 Hence draught T of the cuboid can be found. 
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Example 3.2 

 
A cuboid shaped wooden block (L x B x D) 1.45m x 0.5m x 0.25m floats in water. If 
the block weighs 0.154 tonnes, find its draught if it floats in freshwater density 1.00 
tonne/m3. 

 
Solution: 
 
The weight of the block of 0.154 tonnes must be supported by displaced water i.e. 
the block must displace 0.154 tonnes of water: 
 

 
In fresh water,     

Volume of displaced water   = L x B x T   

   Weight of displaced water   =  x  FW   

 = 1.45 x 0.5 x T x FW  
 

This must equal 0.154 tonne 

1.45 x 0.5 x T x fw    = 0.154 tonnes 
   T = 0.212 m 

 
 
 

 
 
 
CASE 2: If we know its draught, we can know its volume displacement, we can 
find its weight 
 
If we know the draught of the cuboid, we can find its volume displacement and 
hence the weight of the object; 

 
Say if we know its draught T, volume displacement = L x B x T 

Weight = Buoyancy = Volume Displacement x  water 

Weight = L x B x T x  water 
 

Example 3.3 
 
A box barge length 100m breadth 20m floats at a draught of 5m in sea water 1.025 
tonne/m3. Find its weight.  
 
Solution 
 

While floating in sea water density 1.025 tonne/m3: 

Volume Displacement =   = L x B x T   

Weight of barge  = Weight displacement,    

W  =    =  x salt water 

= 100 x 20 x 5 x 1.025 
      =  10250 tonnes 

Exercise 3.2 
 
Do similar calculations for salt water (density 1025 kg/m3 and oil density 0.85 tonne/m3) 
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3.6   Hydrostatic Particulars 
 
A floating object will be at a certain draught depending on the total weight of the 
object, density of water and the shape of the object. For a ship, the shape of the 
object has strong influence on the draught of the ship; the shape and draught have 
to provide enough buoyancy to support the ship. 
 
 
 
 
 

 

1.0m 

 

Exercise 3.6 
 
A cylindrical tank diameter 0.6m and mass 200kg floats with its axis vertical.  

Find its present draught in oil ( = 0.95 tonne/m3).   
Find the weight of cargo to be added to ensure it will float at a draught of 

0.85m. 

Exercise 3.4 
 
Find the new draught of the box in example 3.3 when it goes into river, water 
density 1.000 tonne/m3. Also find a new draught if it is in sea water with density 

1.100 tonne/m3. 

Exercise 3.3 
 
A block of wood length 5m, breadth 0.5m and depth 0.2m is floating in seawater 

at a draught of 0.1m. Find the weight of the block. 

Exercise 3.5 
 
A cylindrical container weighing 5 tonne floats 
with its axis vertical. If the diameter is 1.0m, find 
its draught in: 

i. sea water  
ii. oil of density 870 kg/ m3. 
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When a ship is floating at a certain draught, we can find the mass displacement 
and weight of the ship if we can find its displaced volume . Also we can know its 
waterplane area, calculate its TPC, KB, Cb etc. These particulars which are 
properties of the immersed part of the ship are called hydrostatic particulars. 
Examples of hydrostatic particulars are: 
 
   , , KB, LCB, Aw, BMT, BML, TPC, CB, CP, CM, CW, LCF, MCTC, WSA 
 
These particulars describe the characteristics of the underwater portion of ship at a 
particular draught. It is related to volumes, areas, centroids of volumes and areas 
and moments of volumes and areas of the immersed portion. If the ship is out of 
water, and draught becomes zero, the particulars ceased to exist. 
 

As long as draught and trim is maintained, the size and shape of the underwater 
immersed parts of the ship remains the same. The volumes, areas and moments of 
areas and volumes remain the same. Once draught or trim changes, the particulars 
will also change. 
 
This change in draught will normally occur due to changes in total weight of the 
ship, or if a force is applied to the ship to make it sink to a deeper draught. 
 
 
Example 3.4  

 
A box 2m x 1m (LxB) in sea water is floating at a draught of 0.3m.  

Calculate its , , CB, CWP and TPC. 
  

i. = L x B x T = 2 x 1 x 0.3 = 0.6m3 

ii.  = L x B x T x  =  x  = 0.6 x 1.025 = 0.615 tonnes  
 

iii. CB  =                 =    0.6   =  1.00 
     L x B x T              0.6    
 

iv. CWP =    Awp        =     2 x 1    =   1.00 

        L x B           2 x 1 
 

v.  TPC  =  Awp x        =   2 x 1 x 1.025    =  0.0205 
                     100                100 
 

 

 

Exercise 3.7 
 

     Calculate the particulars at draught of 0.4, 0.5, 0.6 and 0.7m. 

Exercise 3.8 
 

Find hydrostatic particulars in sea water (, ,Awp,LCB, LCF,TPC) of a box barge 
with dimension L=100m, B=20m, at draughts of 1.0m, 3.0m, 5.0m, 7.0m, 9.0m. If 
the barge weighs 2300 tonne, what is its draught?  If the barge is floating at a 
draught of 4m, what is its CB? 
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It can be seen from Exercise 3.8  that for a box-shaped object at different draughts, 
the waterplane areas are constant. Hence, many hydrostatics particulars remain 
constant. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.7   Hydrostatic Particulars of a Ship 

 
Hydrostatic particulars of a real ship will be different. Consider the ship whose lines 
plan is shown below. At different draughts, the ship will have different waterplane 
areas, volumes and centroids. Hence, the hydrostatic particularly will vary as the 
draughts changes. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 3.9: 
 
An empty cylindrical shaped tank is floating in sea water  (density 1.025 t/m3) at a 
draught of  8.0 m with its axis vertical.  The external diameter of the tank is 12.0 m, 
internal diameter 11.0 m, thickness of base 1.0 m and the overall height is 16.0 meter.  
Its centre of gravity is   6 meter above  its inner base.    

Calculate: 
. 

 i. Find Hydrostatic particulars ,  Awp, LCB,  Cb, Cp, TPC, WSA  
at T=1, 2, 4, 6,  8m. 

           ii. Plot hydrostatic curves similar to page 19 showing all data. 
 

 
 iii.  Final draught of the tank after 500 m3 diesel oil (density 850 kg/m3) is poured 
into the tank.   
 

The second moment of area of a circle about its diameter is   
D4

64
. 
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If areas, volumes, moments, centroids of the waterplanes and sections of the ships 
can be calculated, hydrostatic particulars of a ship can be obtained.  These are 
calculated at the design stage, once the shape and size of the ship has been 
decided.  
 

 
 
The particulars can be presented in two forms, either as a set of curves or in tabular 
format. Table 3.1 shows a typical table of hydrostatic particulars while an example 
of hydrostatic curves is shown on page 18. 

 
Table 3.1 Hydrostatic Particulars of Bunga Kintan LBP 100m 

 

 
 
 
 
 
 
 

Draught 

(m) 

Displacement 

(tones) 
Cb 

KB 

(m) 

BMT 

(m) 

BML 

(m) 

MCTC 

(tonne-m) 

LCB 

(m from 

) 

LCF 

(m from ) 

8.00 14820.00 0.72 4.07 3.66 180.00 190.00 2.50 2.00 

7.50 13140.00 0.71 3.67 3.98 195.00 183.00 2.30 1.50 

7.00 11480.00 0.70 3.26 4.46 219.00 180.00 2.00 0.70 

6.50 9870.00 0.69 2.85 5.02 244.00 172.00 1.80 -0.06 

6.00 8280.00 0.67 2.44 5.66 279.00 165.00 1.50 -1.00 

5.50 6730.00 0.66 2.04 6.67 327.00 157.00 1.10 -2.00 

5.00 5220.00 0.64 1.63 8.06 392.00 146.00 0.00 -3.00 

Exercise 3.10 
 

A ship with length 100m, breadth 22m has the following volumes and areas at 

different waterlines. Calculate its , CB, CW and TPC in saltwater density 
1.025tonnes/m3. 
 

Draught 
(m) 

Aw  
(m

2
 ) 

 (m
3
) 

 
(tonnes) 

Cb Cw TPC 

    x ro 
   

LBT 

Aw  
(LB) 

Aw x ro 
100 

2 1800.0 3168.0     

4 2000.0 6547.2     

6 2100.0 10137.6     

8 2120.0 13728.0     

10 2130.0 17424.0     
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3.8   Using Hydrostatic Curves and Tables 
 

Hydrostatic curves and tables can be used to obtain all hydrostatic particulars of a 
ship once the draught or any one of the particulars is known.  
  
Example 3.5  
 
From MV Bulker hydrostatic Curves (pg18) at a draught of 7m, we can obtain 

displacement  = 31,000 tonnes, LCF = 2.0m forward of amidships and MCTC = 
465 tonne-m etc. Also if we know the ship weighs 40,000 tonnes, its draught, TPC, 
MCTC, LCF and LCB can be obtained.  

 

 
Hydrostatic tables can be used in a similar manner to obtain hydrostatic particulars 
once draught is known or to obtain draught and other particulars once the 
displacement or another particular is known. There is however a need to interpolate 
the table to obtain intermediate values. 

 

 
 

HOMEWORK 1: 
 
By using the hydrostatic particulars of Bunga Kintan shown in Table 3.1: 
 

i. Draw full hydrostatic curves of the ship 
ii. Find values of displacement  , KB , LCB, BMT, BML, MCTC, CB, 

LCF of the ship if it is floating at a draught of 6.75m. 
iii. Find values of  T, KB , LCB, BMT, BML, MCTC, CB, LCF of ship if 

the ship weighs 11,480 tonnes. 
iv. When the ship is floating at a draught of 5.5m, 3000 tonne cargo 

was added. What is its new draught? 
 

Submission Date: _______________________ 

Exercise 3.11 
 
Using MV Bulker Hydrostatic Curves, find displacement, LCB, LCF, TPC at draught 

of 9.5m. If 1500 tonnes is added to the ship, what is its new draught? 

 
Exercise 3.11: 
 
Calculate   , , KB , LCB, Aw, TPC, CB, CP, CM, CW, LCF  of a cylinder radius 1m 

floating with axis vertical at draughts of  1.0, 1.5, 2.0 and 2.5m. 
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               MV Bulker Hyrostatic Curves 
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Chapter 4 
Basic Stability Consideration 

 
4.1   Introduction 
 
One of the factor threatening the safety of the ship, cargo and crew is the lost or 
lack of stability of the vessel. Stability calculation is an important step in the design 
of the ship and during its operation. While designing the ship, the designers must 
be able to estimate or calculate to check whether the ship will be stable when 
constructed and ready to operate. For the ship's master, he must be able to load 
and stow cargo and handle the ship while ensuring that the ship will be stable and 
safe. 

 
4.2   What is stability? 
 
Stability is the tendency or ability of the ship to return to upright when displaced 
from the upright position. A ship with a strong tendency to return to upright is 
regarded as a stable vessel. On the other hand, a vessel is said to be not stable 
when it has little or no ability to return to the upright condition. In fact, an unstable 
ship may require just a small external force or moment to cause it to capsize. 
 
 

 

Figure 
4.1 

 
An 

analog
y for 

stability is often given of the marble. In Figure 1 (a), the marble in the bowl will 
return to its original position at the bottom of the bowl is it is moved to the left or 
the right.  This marble is in a condition called positively stable.  A slight push on 
the marble which is put on an upside down bowl as in Figure 1 (b) will cause it to 
roll off, a condition equivalent to instability. A neutrally stable ship is analogous to 
a marble put on a flat surface, it will neither return nor roll any further. 
 

 
4.3   Longitudinal and Transverse Stability 
 
Ship initial stability can be seen from two aspects, longitudinally and transversely. 
 
From longitudinal viewpoint, the effect of internal and external moments on ship's 
trim is considered. Important parameters to be calculated are trim and the final 
draughts at the perpendiculars of the ship. In any state, there is a definite 
relationship between trim, draughts and the respective locations of the centres of 

buoyancy and centre of gravity. The trim angle  is rarely taken into consideration.  
Transverse stability calculation considers the ship stability in the port and 
starboard direction. We are interested in the behaviour of the ship when external 
statical moment is applied such as due to wind, waves or a fishing net hanging from 
the side. The effect of internally generated moment such as movement of masses 
on-board transversely is also studied.  An important relationship considered is that 

 (a)  (b)  (c) 



 
 

Naval Architecture  Notes 

© Omar bin Yaakob, July 2008                                                                                                         20 

between heeling and righting moments and the resulting angle of heel  and its 
consequence on the safety of the boat.  
 
This Chapter will focus on basic transverse stability particularly the relationships 
between the metacentre and the centre of gravity. 

 
 
4.4   Basic Initial Stability: The role of GM 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4.2 
 

       
 
 
Consider the ship floats upright in equilibrium as in the above figure 4.2 (a). The 
weight of the ship equals its displacement and the centre of buoyancy is directly 
below the centre of gravity. When the ship is slightly disturbed from upright, the 

centre of buoyancy being centre of underwater volume moves to the right. The line 
of action of buoyancy vertically upward crosses the original centreline at the 
metacentre, M. Since G does not move, a moment is generated to turn the ship back 
to its original position. This moment is called the returning moment. 
 
In this case, M was originally above G and we can see that the returning moment is 
positive. If M was below G i.e. GM negative, the returning moment will be negative 
hence the ship is unstable. If M is at G, then the ship is neutrally stable. 
 
Righting moment is the real indication of stability i.e. the ability of the ship to 
return to oppose any capsizing moment and return the ship to upright position. 
 
The larger the righting moment, the better stability is. 

       K 

      B 

   G 

     MT 

   w    L 
 W 

 W 

   G   
  W 

        MT 

  B1 

     B 

  w1 L1 

  W 
  K 

w 

L 

(a) (b) 
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Consider  the triangle shown below: 
 

Righting moment =   x GZ 
 

and  GZ = GMT sin  
 

For any displacement, righting moment depends  
on GZ. 

 
And GZ depends on GM.  The bigger GZ, the  
bigger Righting Moment. 

 
 
 
 
 
 
 
 
 
 
Relationships between K, B, G and MT are important. 
 
 
 
 KMT = KB + BMT 
 
 KMT = KG + GMT 
 
For any particular draught or displacement at low angle of heel, keel K  and 
metacentre M are fixed.  Therefore the values of KB, BM  and hence KM are fixed, 
as can be obtained from hydrostatic particulars.  Therefore the distance GMT will 
only depend on the height of centre of gravity.  In other words, to ensure a large 
GMT, we can only ‘control’  KG.   

 
4.5   Determining Centre of Gravity, Areas or Volumes of Composite Bodies 
 
The above section has shown that the relative position of M and G are important in 
determining ship stability. Since M is constant for any particular draught, only G 

will finally determine the value of GM.   
 
Before we go into the details of stability calculations, we have to consider how to 
determine the location of G.  Consider a composite body consisting of two portions 
shown in Figure 4.3. 
 
 
 
 
 
 
 
 
 

Figure 4.3 

 ca  cb  C 

xb 
xa 

 X 

 Area A 

 Area B 

G 

MT 

B 

K 

  
 
 
           

   MT 

G       Z 

   
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Distance of Centre of Composite to the reference axis: 
 
  X  = A  x  xa  + B x xb 
      A + B   
i.e., 
 
  X = Total moment of area about the reference axis 
                       Total area 
 
 
If the composite consists of volumes, 
 
Centre of Volume  

  X = Total moment of volume about the reference axis 
                         Total volume 
 
If the composite consists of weights, 
 
Centre of Gravity  
  X = Total moment of weight about the reference axis 
   Total weight 
 
 

Example 4.1 

 
Find centre of area (from AP) for an object consisting of four components shown in 
the figure below. 
 

 
 

Component 
Area 
(m2) 

Distance from AP 
(m) 

Moment of Area 
about AP (m3) 

1  -2.5  

2    

3    

4    

TOTAL    

 
 Centroid from AP  = Total moment of area about AP  
     Total area 
    =     m 
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Example 4.2 

 
A trimaran has three hulls and the respective volume displacements, LCB and KB 
are shown below. Find the total displacement, LCB and KB. 
 
  

Hull Volume 
Displacemen
t  (m3) 

Lcb (m aft of  
amidships) 

Kb 
(m above keel) 

Side 1 158.7 13.0 2.5 

Main 1045.8 2.0 2.0 

Side 2 158.7 13.0 2.5 

    

 

 

Hull Volume 
Displace
ment  
(m3) 

lcb (m aft 
of  
amidships) 

Moment about 
amidships (m4) 

Kb 
(m above 
keel) 

Moment 
about keel 
(m4) 

Side 1 158.7 13.0  2.5  

Main 1045.8 2.0  2.0  

Side 2 158.7 13.0  2.5  

TOTAL      

 
  LCB= Total moment about amidships =     4.56 m aft of amidships 
   Total Volume 
 
  KB= Total moment about keel  =     2.12  m 
   Total Volume 
 
Example 4.3 

 
A stack of weights consists of one 3kg weight and two 2kg weights. Find centre of 
gravity of the stack above the floor:  
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Item Weight (kg) CG above floor 
(cm) 

Moment about Floor 
(kgcm) 

Wt A    

Wt B    

Wt C    

JUMLAH    

 
Final CG =    =   cm 

 
Example 4.4 

 
A ship has three parts and the respective weights and Kg are as follows. Find the 
total weight and KG. 
 

 Part Weight  
(tonnes) 

Kg 
(m above keel) 

Lightship 2000 5.5 

Cargo 1 300 7.6 

Cargo 2 500 2.5 

   

 
 
 

Part Weight  
(tonnes) 

Kg 
(m above 
keel) 

Moment 
about keel 
(tonne-m) 

Lightshi
p 

2000 5.5  

Cargo 1 300 7.6  

Cargo 2 500 2.5  

TOTAL    

 
  KG  =  Total moment about Keel =        m 
   Total weight 

 
 

 
 
 

Example 4.5 

 
 
A ship of 6,000 tonnes displacement has KG = 6 m and KM = 7.33 m. The following 
cargo is loaded: 
  1000 tonnes, Kg 2.5 m 
    500 tonnes, Kg 3.5 m 
    750 tonnes, Kg 9.0 m 
 
The following cargo is then discharged: 
 
  450 tonnes of cargo Kg 0.6 m 
    And   800 tonnes of cargo Kg 3.0 m 
 
Find the final GM. 
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Item Weight (tonne) Kg Moment about keel 
(tonne-m) 

 
Ship 
Loaded 
Cargo1 
Cargo2 
Cargo3 

 
6000 
1000 
500 
750 
 

 
6.0 
2.5 
3.5 
9.0 
 

 

Unloaded 
Cargo 

-450 
-800 

0.6 
3.0 

 

    

 
       Final moment  

Final KG  =          Final displacement 
  = ________ 
                                     
Final KG =         m 
 
Final KM =         m  
Final KG =         m 
Ans. Final GM =            m 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Homework 2 
 
A  box-shaped barge is floating in sea water at a draught of 5m.  The extreme 
dimensions of the barge (L x B x D)  are 12m x 11m x 10m.  The wall and floor are 0.5m 
thick.  Its centre of gravity is 4m above keel.     
 
Calculate: 
 
i. The displacement and GMT of the empty barge. 
ii. The barge is to be used to carry mud  (density1500 kg/m3).  If the draught of the 

barge cannot exceed 7.5m, find the maximum volume of mud that can be loaded 
into the barge. 

iii. For the barge loaded as in (ii), find its  GMT.  
 
Submission Date: _______________ 
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4.6   Movement of Centre of Areas, Volumes and Weights 

 
When a portion is added or removed from an object, its centre moves.  
  
Consider a homogenous object as shown below: 
 

 
   
i. If weight is moved a distance y: 
 
Centre of gravity moved x = GG’ =  m x y 
         M 
 i.e. total moment divided by total weight 
 
 
ii. If weight m is removed: 
 
The remaining weight M-m 
 
Movement of centre of gravity x = GG’ = m x d 
             M-m 
 
i.e. total moment divided by remaining  weight. 
 

Example 4.6 
 
A ship weighing 7000 tonnes is floating at the wharf. At that time, KM = 6.5 m and 
GM 0.5m. Find new GM when a 30 tonnes box is loaded at Kg 10.0m. Assume no 
change in KM. 
 
Method 1: 

 
Find rise in KG  
 
  Original KG = KM - GM =         m 
  Distance 30 tonnes box from original G =      m 
 GG’= 30 x  4.0 = 0.017m 
 7030 
 
 KG’= KG+ GG’ =     m 
 
KM does not change, therefore, GM =  =   m 
 

M 
G’ 

G 

B 

K 

10
m 
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Method 2: 
 
Find final KG using table of moment about keel 
 

Portion Mass (m) Kg (m) Moment about keel 
(tonne-m) 

Ori. Ship 7000 6.0  

Box 30 10.0  

Total 7030   

    

 
 KG = Sum of moment 
           Sum of weight   

 KG =              m   
  
 GM = KM - KG  
 KM - KG =           m 
  
 
4.7  Hanging Weights, The Use Of Derricks And Cranes 
 
The use of cranes and derricks will make the weights suspended.  Suspended 
weights acts at the point of suspension.  Therefore a weight that was initially 
located on the lower deck for example will instantly be transferred  to the point of 
suspension at the instant the weight is lifted by the derrick.  The centre of gravity 
KG will suddenly increase and since KM is constant,  GM will reduce suddenly.  If 
the rise in KG is more than the original GM,  the net GM will be negative, leading to 
instability. 
 
Example 4.7 
 

 
A ship of 7,500 tonnes displacement is upright and has GM 0.20m and KM 6.5 m.  
A heavy cargo of 100 tonnes already on the lower deck (kg=2m) is to be unloaded 
using the ship’s crane.  When lifting the cargo crane head is 15 m above keel.  
What is GM during lifting. Comment of the safety of the operation. 

 
Treat as if the weight is suddenly transferred from lower deck to the point of 

suspension, a distance of 15 meters.  The KG will rise, and since KM constant, GM 
will be reduced. 
 
 Original KG  = KM-GM= 6.5 – 0.2  = 6.3m 
 
 Rise in KG  =  100 x 13 
   7,500 
 
   =0.173m 
 
  KG during lifting =  KG + Rise = 6.473m 
  GM during lifting = KM- Kgnew = 6.5- 6.473 = 0.027m 
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4.8  Free Surface Correction 
 
When  free surface exists on board the ship, stability of ship is affected.  The free 
surface gives rise to free surface moment which in effect reduce GM.  The reduction 
is called Free Surface Correction (F.S.C). 
 
FSC is calculated from the second moment of area of the surface of the fluid; 
 
 FSC =  Free surface moment 
   Ship displacement 
 
Free Surface Moment (FSM)  =  i  x  ρ fluid 

 

 
 Where i  the second moment of area of the surface of the fluid  and ρ fluid     is the 
density  of the fluid being considered. 
 
Once the  FSC is known, the new reduced GM called GMfluid is  obtained 
 

GM fluid = GMsolid  - FSC 
 

It is important that  free surface be avoided or at least minimised. 
 
Note also that KG in ships having free surface is  called KGfluid  and regarded 
increased by FSC. 
 
 KGfluid  = KGsolid + FSC 
 
 
 
For tanks with a rectangular surface: 
 
 Free surface moment =  1 x tank length x tank breadth3 x density of fluid 
       12 
 
 Free surface correction =  1 x tank length x tank breadth3 x density of fluid 

12 ship displacement 
 
 

 
 
EXERCISE 4 
 
1. Bunga Kintan (Hydrostatic data given on page 12)  is floating at draught of 

6.5m.  If its KG is 6.8m, what is its GM? 
 
2. A ship has a displacement of 1,800 tonnes and KG = 3m. She loads 3,400 

tonnes of cargo (KG = 2.5 m) and 400 tonnes of bunkers (KG = 5.0m). Find 
the final KG.  2.84m 

 
3. A ship sails with displacement 3,420 tonnes and KG = 3.75 m. During the 

voyage bunkers were consumed as follows: 66 tonnes (KG = 0.45 m) and 64 
tonnes (KG =1 m).  Find the KG at the end of the voyage. 
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4. A ship has displacement 2,000 tonnes and KG = 4m. She loads 1,500 tonnes 
of cargo (KG = 6m), 3,500 tonnes of cargo (KG = 5m), and 1,520 tonnes of 
bunkers (KG = 1m). She then discharges 2,000 tonnes of cargo (KG = 2.5 m) 
and consumes 900 tonnes of oil fuel (KG = 0.5 m.) during the voyage.  If KM= 
5.5m, find the final GM on arrival at the port of destination. 

 
5. A ship arrives in port with displacement 6,000 tonnes and KG 6 m. She then 

discharges and loads the following quantities: 
Discharge  1250 tonnes of cargo  KG 4.5 metres 
    675 tonnes of cargo KG 3.5 metres 
    420 tonnes of cargo  KG 9.0 metres 
Load    980 tonnes of cargo KG 4.25 metres 
    550 tonnes of cargo  KG 6.0 metres 
    700 tonnes of bunkers KG 1.0 metre 

      70 tonnes of FW KG 12.0 metres 
During the stay in port 30 tonnes of oil (KG 1 m.) are consumed.  If the final 
KM is 6.8 m., find the GM on departure. 

 
6. A ship of 9,500 tonnes displacement has KM 9.5 m and KG 9.3 m. A load 

300 tonnes on the lower deck (Kg 0.6 m) is lifted to the upper deck (Kg 11 m). 
Find the final GM. 

 
7. A ship of 4,515 tonnes displacement is upright and has KG 5.4 m and KM 

5.5 m.  It is required to increase GM to 0.25m. A weight of 50 tonnes is to be 
shifted vertically for this purpose.  Find the height through which it must be 
shifted. 

   
8. A ship of 7,500 tonnes displacement has KG 5.8 m. and GM 0.5 m. A weight 

of 50 tonnes is added to the ship, location Kg = 11m and 7m from centreline 
to the starboard side. Find final location of G above keel and from the 
centreline.  What is its new GM? 

 
9. A ship has a displacement of 3,200 tonnes (KG  = 3 m. and KM = 5.5 m.). She 

then loads 5,200 tonnes of cargo (KG = 5.2 m.). Find how much deck cargo 
having a KG = 10 m. may now be loaded if the ship is to complete loading 
with a positive GM of 0.3 metres.  

 
10. A ship of 4,500 tonnes displacement is upright and has KG 5.4 m and KM 

5.5 m. It is required to move a weight of 50 tonnes already on the deck 
(kg=6m) using the ship’s derrick. The derrick head is 13 m above keel. Is it 

safe to do so? 
11. A ship of 9,500 tonnes displacement and has KM 9.5 m and KG 9.3 m. The 

ship has two fuel tanks in double bottoms, rectangular shape each 20 x 5m 
containing bunker density 900 kg/m3. Find GMfluid when free surface exists 
in the tank. 

12. Find Gmfluid for the ship in question 11 but with one tank only, length 20m 
breadth 10m. 

13. What happens to  i  when there are three tanks with b = 3.33m in question 
11. 
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Appendix A 
 
 

Second Moments of Areas 
 
The second moment of an element of an area about an axis is equal to the product 
of the area and the square of its distance from the axis.  Let dA in Figure A.1 
represent an element of an area and let y be its distance from the axis AB 
 
 
 
 
 
 
 
 
 

Fig. A.1 
 
 
The second moment of the element about AB is equal to dA x y2   
 
2. To find the second moment of a rectangle about an axis parallel to one of its 

sides and passing through the centroid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. A.2 
 
 
In Figure A.2, l  represents the length of the rectangle and b represents the breadth.  
Let G be the centroid and let AB, an axis parallel to one of the sides, pass through 
the centroid. 
 
 
 
 

x 

 

  G 

A B 

y 

dA 

A B 

dx 

 l 

b 
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Consider the elementary strip which is shown shaded in the figure.  The second 
moment (i) of the strip about the axis AB is given by the equation:- 
 

i= l dx x x2 

 
Let I AB be the second moment of the whole rectangle about the axis AB then:- 
 






b/2

b/2-

2 . x.  1 dxlAB  

 






b/2

b/2-

2 .  x  1 dxlAB  

 

2/

2/

3

3

x
          

b

b

l













  

 

12

 
  1

3lb
AB   

 
 
3. To find the second moment of a rectangle about one of its sides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. A.3 
 
 
Consider the second moment (i) of the elementary strip shown in Figure A.3 about 
the axis AB. 
 

i= l dx x x2 

 
 
 
 

b 

 

A 
B 

dx 

   

x 

l 
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Let IAB be the second moment of the rectangle about the axis AB. Then :- 


b

O

2 . x.  1 dxlAB  

 

       

b

O

l 









3

x
   

3

 

 
or 

 

3

 
  1

3lb
AB   

 
 
4. The Theorem of Parallel Axes 

 
The second moment of an area about an axis through the centroid is equal to 
the second moment about any other axis parallel to the first reduced by the 
product of the area and the square of the perpendicular distance between the 
two axes.  Thus, in Figure A.4, if G represents the centroid of the area (A) and 
the axis OZ is parallel to AB then:- 

2

AB Ay - II OZ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. A.4 

 
 
 
 
 
 
 
 
 
 

 

A B 

y 

O Z 

  G 
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5. Second moment of area of a circle 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. A.5 

 
 

For circle, the second moment of area about an axis AB. 
 

64

D 
  I

4
AB  

 
 What is IXX? 
 
 
 
6. Applications. 
 

Second moment of areas are used in calculations of BML and BMT : 
 


 F

L

I
  BM  

 
and   


 T

T

I
  BM  

 
 

Where IF is longitudinal second moment of area of the waterplane about the 
centre of floatation, IT is transverse second moment of area about the centreline  

and  is volume displacement. 
 
 
 
 
 

A B D 

y 

X 

X 



 
 

Naval Architecture  Notes 

© Omar bin Yaakob, July 2008                                                                                                         34 

 
EXERCISES 
 
 

1. Find BML and BMT of a box shaped barge 120m x 20m x 10m floating at a 
draught of 7m. 

2. A cylinder of radius r = 10m is floating upright at draught of 6m in fresh 
water.  Find its KML and KMT. 

 
3. A fish cage consists of a wooden platform placed on used oil drums with the 

following dimensions. 
 
   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the total weight of the structure is 3 tonnes, floating in sea water calculate: 
 

i) draught 
ii) KMT 
iii) KML 

 
 

 

4m 

Diameter 
1m. 

6m 

 
Homework 3: 
 
A catamaran consists of two box-shaped hulls spaced 5m apart, centreline 
to centreline. Each hull  measures (L x B x D) 10m x 0.5m x 1m.  If its 
draught is 0.3m, find its : 

 

i)  and  
ii) KB 
iii) BMT 
iv) Maximum allowable KG if GM minimum is 0.2m 
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