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1 - Independent particles, correlations
The concept of an independent particle state is of a statistical nature

For N particles

A particular case

Seen from the corresponding N-particle (purely spatial) wavefunction
`

 
Yet correlations exist

- of dynamical nature (pairing correlations, quantal fluctuations around 
some classical equilibrium solution, etc.)
- due to symmetries

Examples of the latter : geometrical (e.g. planar reflexion), global spin symmetry for a 

system of two distant particles like in the EPR problem, etc.) 

Ψ([ r⃗ i ]) = < [ r⃗ i ] ∣ Ψ0 > =∏i=1, N < r⃗ i∣ ϕi >
Prob(1 in r⃗ 1 , 2 in r⃗ 2, ...) = ∏i=1, N Prob(i in r⃗ i)

∣ [ r⃗ i ] > =∏i=1, N
∣r⃗ i >

∣ Ψ0 > =∏i=1, N
∣ϕi >



  

One-body, two-body observables, … :

hermitian, commuting with any permutation P of N objects
- same mathematical form for any i or (i,j)  
-      etc. 

Examples of one-body potentials :
Kinetic energy, Coulomb electron-nucleus interaction

Examples of two-body potentials :
Electron-electron coulomb, nucleon-nucleon strong interactions

Independent particle states are mathemetically acceptable stationary 
solutions of the Schrödinger equation for a one-body Hamiltonian

In atomic physics neglecting the residual interaction, the dynamics is 
reasonably approximated by such a one-body Hamiltonian
In nuclear physics this is of course a priori different 

Op (1)=∑i=1, N
O(qi , pi)

Op (2)=
1
2 !
∑i=1, N ; j≠i

O(qi , q j , pi , p j )

O(qi , q j , pi , p j) =O(q j , qi , p j , pi )



  

For a one body potential binding fermions in a restricted part of the space, 
shell effects have been observed (bunching of the single particle states)
When one such shell is filled the separation energy (positive quantity) is 
suddenly decreased 
This is observed in atomic physics (for the ionisation potential) which does 
not come as a surprise
This is observed in nuclear physics which is more surprising :
Should a mean (i.e. averaged) potential exist in the nucleus ?

J. Dobaczewski(U. Warsaw)

E =∑i=1, Z
ei

Esep=∣E(Z) � E(Z�1)∣
=∣elast∣



  

In some classical fashion one might expect (Hartree 1928) that this mean field 
V would be obtained by the following convolution :

where v is a translationally invariant two-body interaction and ρ the (un-
normalized) probability density of presence of a nucleon

evaluated within the independent particle limit.
Beyond the spurious effect of self interaction and the neglection of the Pauli 
principle (the second correcting for the first incidentally) the very existence of 
such field in Nuclear Physics seems a priori to be questioned :
Evaluating roughly the mean free path as
with the saturation nuclear density and an average value of the free N-N cross 
section (at an energy typical of the nucleonic zero point motion)  one gets
                   which is of the order of the nucleonic size
This is, of course, not consistent with the very concept of a nucleonic motion 
in an average field. 
But, the Pauli principle, reducing the available phase-space  quenches the 
effective interaction cross section to raise λ at a value ≥ the nuclear size 

V ( r⃗ ) =∫ρ( r⃗ ' ) v( r⃗ � r⃗ ' )d3 r '

ρ( r⃗ ) =∑i=1, A
∣ϕi ( r⃗ )∣

2

λ = 1/(σ ρ)

λ ≈ 1 fm



  

Then the problem is to define as best as possible, from first principles as 
much as possible, this mean field, in particular taking into account the Pauli 
principle which proves to be essential. 

2 – Pauli principle correlations 
From the complete set of N ! non hermitian permutation operators P, one 
defines the hermitian idempotent (thus projector) operator A as

where sgn(P) is the signature of P.
This operator projects onto completely antisymetric states           i.e. such that

for all P
These states form a subspace S

A
 of the space of the a priori physical space for 

systems of N particles

The Pauli principle postulates two things for N fermions states :
- A symmetry principle : [H,P] = 0 for all P 
- A choice principle : acceptable physical states belong to the subspace S

A
 

A=
1

N ! ∑{ P}
sgn(P) P

P ∣ Ψ > = sgn(P) ∣ Ψ >
∣ Ψ >



  

Then the naive independent wavefunction                    
is not acceptable and instead one defines from it

It is normalized provided that 
Its wavefunction 

is called a Slater determinant, since

The above entails the so-called Pauli exclusion principle since, if one has 
in the state Ψ two individual states i and j ( i ≠ j ) such that

then, calling T the transposition              the state Ψ has a vanishing probability

Considering the set           as forming an orthonormal (complete) basis of the 
one-particle physical space, the ensemble of above defined Slater 
determinants built from N different such individual particle basis state form 
an orthonormal basis of the physically acceptable states of N fermions. 

∣ Ψ0 > =∏i=1, N
∣ϕi >

Ψ([ r⃗ i ]) =
1

√N !
∑[ P ]

sgn(P)∏i=1, N
< r⃗ i ∣ϕP(i )>

<ϕi ∣ ϕ j > = δij

∣ Ψ> = √N ! A ∣ Ψ0 > =
1

√N !
∑[ P ]

sgn(P)∏i=1, N
∣ϕP(i )>

det [ M i , j ] =∑[ P ]
sgn(P)∏i=1, N

M i , P(i )

∣ ϕi > ≡∣ ϕ j >

T ∣ Ψ > =∣Ψ > =�∣ Ψ> = 0
[ϕi ]

i ←→ j



  

3 – The Hartree-Fock approximation 
The Ritz theorem establishes that for non vanishing Ψ states, solving the 
variational problem 

is  equivalent to solving the Schrödinger stationary (eigenvalue) problem

The Hartree-Fock approximation consists in restricting the trial states in the 
above variation to be merely Slater determinants.

One shows that this is achieved by solving the stationary Schrödinger 
equation for individual states as

to form with a set of N such individual solutions a Slater determinant Ψ. 
In the above H

HF
 is the so-called one-body reduction of the hamiltonian H, 

defined if H includes a kinetic energy term K and a two body interaction v as

δ [
<Ψ ∣ H ∣ Ψ >

<Ψ ∣ Ψ >
] = 0

H ∣ Ψ > = E ∣ Ψ >

H HF ∣ ϕ j > = e j ∣ ϕ j >

<χ i ∣ H HF ∣ χ j > = < χ i ∣ K ∣ χ j > + <χ i ∣V HF ∣ χ j >



  

<χ i ∣V HF ∣ χ j > =∑α

occ.
<χ i ϕα ∣ v ∣ χ̃ j ϕα >

where the one-body potential V
HF

 is defined by

with

Ignoring the transposition term (in T) in V
HF

 one retrieves the classical 

convolution potential (called the Hartree potential) previously guessed upon 
choosing and with a local two-body potential, namely such 
that       expanding the 
individual states φ on the r-basis
one finds

From electron scattering one has confirmed the
saturation (constant density) in the nuclear internal 
part and leptodermous (thin skin) properties.
The rough density profile is thus of the Fermi 
type

Convoluting ρ with an interaction whose range is much shorter (~0.8 fm) than 
R, one yields a Fermi type V

H
 potential (which is the Woods-Saxon ansatz)

∣ m̃ n> =(1�T ) ∣m n> =∣m n> �∣ n m>

∣ χ i > ≡∣ r⃗ >

< r⃗1 r⃗ 2 ∣ v ∣ r⃗ 3 r⃗ 4 > = δ( r⃗1 � r⃗ 3) δ( r⃗ 2 � r⃗ 4) v( r⃗ 1 � r⃗ 2)
∣ ϕm> =∫ ϕm( r⃗ ) ∣ r⃗ > d 3 r

V H ( r⃗ ) = < r⃗ ∣V H ∣ r⃗ > =∫ v( r⃗ � r⃗ ' ) ρ( r⃗ ' ) d3 r

R

a

a/R < 1
in nuclei

Leptodermous density

ρ(r ) =
ρ̃ 0

1 + e(r � R)/a

a
R
< 1 Range≈ 0.8 fm



  

One may deform this model mean field by replacing R by a function of the 
two angles θ and φ defining a position in spherical coordinates

the first term being included to conserve the nuclear volume 

Restricting to the quadrupole (λ=2) term one gets the two parameters (β,γ) 
collective Å. Bohr model such that (in the intrinsic frame)

R → R(θ ,ϕ) = R̊({αλ ,µ}) (1 +∑λ∑µ=�λ

µ=+λ
αλ ,µYλ ,µ(θ ,ϕ))

ρ( r⃗ ) ≡ ρ 0 H [ R(θ ,ϕ) � r ] (r 0 = 1.2 fm)

∭ ρ( r⃗ ) r 2 sin (θ)dr d θd ϕ = A=
4

3π
r 0

3 A ρ 0

α20 =βsin (γ) α2∓2 = β/√2cos(γ)
α2∓1 = 0

H(x)

x

1

Axial quadrupole moment

Prolate (Q>0): rugby ball
at low deformation
Axailly symmetric ellipsoid
Symmetry axis = large axis 

Oblate  (Q<0): pancake
at low deformation
Axailly symmetric ellipsoid
Symmetry axis = small axis

Q20=2z2 �(x2+ y2)

Q=∫ρ( r⃗ ) Q20 d3 r

β x

γ



  

The second term V
F
 in V

HF
 (involving the transposition T) is called 

the Fock term originating from the Pauli principle implying to project on S
A
 .

In the nuclear medium, the absolute value of its contribution to the average 
potential  is typically one order of magnitude smaller than the one of V

H
 (both 

for the Coulomb pp and the strong interaction NN parts). 
The negative signature of T makes V

F
 to quench the strength of V

H
.

An important feature of the Hartree-Fock  equations is their non linear 
character. Decomposing the solutions φ for individual states on a basis {|m>}

  one gets from

This is generally solved by iterations, hoping for a convergence:
- guess some set of φ for the occupied individual states
- get from them a V

HF
 potential

- diagonalize H
HF

 and deduce a new set of occupied states φ,       etc.

∑n
< m∣ K + V HF ∣ n> X n i = ei X m i with < m∣ n> = δm ,n

∑n
(< m∣ K ∣ n> +∑ j

occ.

∑kl
X k j

* X l j < m k∣v ∣ ñ l >) X n i = ei X m i

∣ ϕ i > =∑n
X m i ∣ n> < m∣ [ (K + V HF ) ∣ ϕi > ] = < m∣ [ ei ∣ ϕi > ]



  

When convergence is reached, there is a consistency between the mean field 
and the eigensolutions of the associated one-body Hamiltonian.
One calls this a self-consistent solution. 

It then results that V
HF

 depends on the nucleus (even on the nuclear state), 

so this entails that              
Now, approximating
One proves that

where is the energy of the Hartree-Fock of the solution for A nucleons 
and     is the energy of the lowest unoccupied state of the mean field 
associated to this solution.
Thus one may approximate the separation energy in the A+1 nucleus as

This of course does not take into account 
the polarization effects (as e.g. the size scaling
in   in the bulk, due to the  nuclear saturation)
It is generally, however a good approximation for E

A+1

V HF (A+1) ≠V HF (A)

∣ ΨHF (A+1)> ≈ aA+1
† ∣ ΨHF (A)> =∣ΨHF

appr.(A+1)>

EHF
appr.(A+1) = <ΨHF

appr.(A+1) ∣ H ∣ ΨHF
appr.(A+1)> = EHF (A) + eA+1

EHF (A)
eA+1

Esep.(A+1) =∣E(A+1)� E(A)∣≈∣eA+1∣
stability valley

isotopic 
series

Aα <1/3

A1/3

A1/3



  

The energy of the Hartree-Fock solution is given by

Since

the Hartree-Fock (total) energy is not given as the sum of the individual 
energies of the occupied states

One may expand the two body interaction in multipoles

If one truncates the expansion to include only a monopole (with        )
and a quadrupole term (with ), further assumes the axial symmetry, 
one gets for the Hartree potential

which is the deformed harmonic oscillator of Å. Bohr and J. Rainwater 
yielding (with a spin-orbit and a   corrective term) the Nilsson model 

EHF = <Ψ ∣K+v∣ Ψ > =∑i

occ.
{<ϕi ∣ K ∣ ϕi > +(1/2)∑ j

occ.
<ϕi ϕ j∣ v ∣ ϕ̃i ϕ j > }

ei =∑i

occ.
{<ϕi ∣ K ∣ ϕi > +∑ j

occ.
< ϕi ϕ j∣ v ∣ ϕ̃i ϕ j >}

EHF = (1/2)∑i

occ.
( ei + <ϕi ∣ K ∣ ϕi > )≠∑i

occ.
ei

v(∣r⃗ 1 � r⃗ 2∣) =∑λ ∑µ=�λ

µ=+λ
wλµ(r 1 , r 2) Yλµ( r̂ 1)

* Yλµ( r̂ 2)

w00∝ r1
2 r 2

2

w2µ∝ r1
2 r 2

2

V H ( r⃗ ) ∝ <ΨHF ∣ r 2 ∣ ΨHF > r 2 + α <ΨHF ∣ r 2Y20( r̂ ) ∣ ΨHF > r 2Y20( r̂ )

l⃗ 2



  

Solving the Hartree-Fock variational problem one gets a priori a local 
extremum, in practice for stability reasons, this is a local minimum. 
Physical intuition and/or more or less educated guesses and trials lead to an 
approximation of the ground state.
One explores non equilibrium solution by solving a constrained variational 
problem (constraining e.g. some multipole moment Q

λμ
)

One so obtains e.g. shape coexistence 
energy patterns or fission barriers 

δ(H �χQλµ) = 0

Koh Meng Hock, L. Bonneau, P. Quentin

M. Girod, J. Libert et al.



  

R.D. Herzberg, P.T. Greenless
Nilsson diagrams



  

The Hartree-Fock approximation may be extended to the non-stationary case.
The Schrödinger equation may be formally cast into the form of a variational 
problem for non vanishing norm states Ψ as 

The Hartree-Fock approximation consists here too to restrict the variation of 
Ψ to Slater determinants.The corresponding equations of motion (due to 
Dirac) for the individual states are written as

4 – Treatments of Correlations beyond 
the Hartree-Fock approximation 

The Hartree-Fock approach may be viewed as replacing, to evaluate the 
stationary states, the exact hamiltonian H by its approximation H

HF
.  

To improve this description one should treat as best as possible the residual 
interaction

δ [∫
t1

t2

<Ψ ∣ H �i ℏ ∂
∂ t

∣ Ψ > dt ] = 0 leading to H ∣ Ψ > = i ℏ ∂
∂ t

∣ Ψ >

H HF ∣ ϕ j > = i ℏ ∂
∂ t

∣ ϕ j >

V res= H � H HF = v� V HF



  

One way to treat the residual interaction is to diagonalize it in a restricted 
basis corresponding to limited particle -hole excitations

(1)vacuum
∣Φ0 >

(2) 1p1h
ap†ah∣Φ0 >

(3) 2p 2h
ap' †ap†ah' ah∣Φ0 >

(4)one�pair
transfer

ap†ap†ah ah∣Φ0 >

Symmetries

Kramers degeneracy
Necessary condition: 
even nucleus

and e.g. axial and 
parity symmetries
K and π conserved
→strong reduction of  
states as (2), (3) …

These states form a 
basis  
to be truncated

States of type (4) for 
g.s. of even nuclei
are numerically and 
dynamically favored 

(K ,�K ) π



  

This is due to the binding character of pairing correlations.

The latter is due to some specific part of the residual interaction.
- Start from the multipole expansion
- Note that the higher multipole part  may be well described by a zero 
range interaction
- Note that such an interaction favours matrix elements of the type

If the spin would be a good quantum number
(ie if single particle states would be eigenstates 
of the projection of the spin on Oz with +1/2 or -1/2 as eigenvalues)
then  the pair                     would correspond to two states 
with the same spatial structure but with opposite spins. 
Then

Such pairs of wavefunctions are implied in a basis made of pair transfer states

To model the pairing correlations in simple terms
one often uses a delta interaction

δ( r⃗ 1 � r⃗ 2)

< i i ∣ δ(T=1) ∣ k̃ k >

[ i , i ]

< i i ∣ δ(T=1) ∣ k̃ k > =∭d3 r |ϕi ( r⃗ ) |
2 |ϕk ( r⃗ ) |

2 since ϕ i ( r⃗ ) = ϕi ( r⃗ )
*



  

Since, as above sketched, the matrix elements which are involved are single 
particle wavefunctions overlaps it appears that for nuclei with N significantly 
far from Z, n-n or p-p correlations are prevalent over n-p correlations 
( |Tz|= 1 thus T = 1 thus S = 0 interaction 
due to the Pauli principle).

In this approach what is left in the residual interaction 
are therefore low multiple interactions responsible 
in particular for quantal fluctuations (zero point motion)
around a classical equilibrium point. 
These correlations are usually called RPA correlations (due to a standard 
approximation to evaluate them).

First microscopic calculations (Copenhagen, ~1960) took stock on these 
simplifications of the residual interaction to mock it up 
as a pairing plus quadrupole residual interaction

Of course modern calculations use more sophisticated forms of the residual 
interaction

vres( r⃗ 1 � r⃗ 2) =�V δ( r⃗ 1 �r⃗ 2) + χ∑µ=�2

µ=+2
Q2µ

* ( r⃗ 1) . Q2µ( r⃗ 2)



  

In principle, the residual interaction should be whenever the interaction v 
and the Hartree-Fock potential V

HF
 are given. In practice, this is not so clear :

- first for practical reasons (very difficult problem :
 « we are simply forced to simplify the force !» B. Mottelson)
- second, because the interaction v is an « effective » interaction (see below) 
- third, because to include the effects of the residual interaction one uses a 
restricted basis either in a diagonalisation procedure or in its Ritz theorem 
equivalent within a variational procedure. This entails a much significant 
renormalisation of the residual interaction (which becomes also « effective »)

The concept of effective interaction
One labels an operator O as effective when to 
compute its matrix elements between two states 
belonging to a restricted ensemble, 
one includes in some more or less approximate way, 
higher order effects including the interaction 
with states outside the retained ensemble 
and finally back to it

Restricted
ensemble

| α >

| i >
| f >

O
O



  

For Hartree-Fock calculations and more generally for approximate 
variational approaches, 
the restricted ensemble is the one where the variation is made. 
They are, e.g., Slater determinants for Hartree-Fock. One has thus, in this 
case, to include the effects of correlations not taken into account. Thus the 
interaction in use there is not the N-N interaction between free nucleons.
These corrections are in particular corrections due to the presence of other 
particles mocked up by a density dependence.This is generally done as

They are many parametrisations for the interaction in use in Hartree-Fock 
calculations among which the most popular are (beyond the p-p Coulomb 
interaction) :

- the Skyrme forces made of a zero range scalar term plus gradient 
corrections, a zero range spin orbit interaction and the above v

DD

- the Gogny forces made of two (finite range) gaussian scalar terms plus 
gradient corrections, a zero range spin orbit interaction and the above v

DD

vDD( r⃗ 1 , r⃗ 2) = ρ(( r⃗ 1 + r⃗ 2)/2)
α δ( r⃗ 1 � r⃗ 2)



  

There are two main routes to treat the residual interactions

Shell Model calculations
- Crude (simple) spherical model wave functions + ad hoc individual energies

- Restricted number of 1-body states to define n- particle n-hole states
- Complete many body basis given this restriction
- Elaborated residual interaction (theoretical or deduced from relevant 
experimental matrix elements)
- Good symmetries (rotational symmetry, parity, particle number)
To sum up : poor mean field excellent treatment of the residual interaction

Self-Consistent Mean Field plus Correlations Approach
- Elaborated mean field carrying most of the physics relevant to 1-body 
properties
- Effective interactions phenomenologically determined
- Approximate and partial treatment of the residual interaction
- Spurious symmetry breaking (rotational, translational symmetries, 
sometimes parity symmetry, particle number …) restored or not
To sum up : excellent mean field poor treatment of the residual interaction

H MF =∑i
ei ai

† ai



  

Symmetries broken in the Hartree-Fock approach

- translational, the average potential is located 
at a well defined place

- rotational when the shape of the intrinsic
density (or of the (Hartree potential) is non 

 (BCS or similar calculations)

NB Isospin (rotational symmetry in isospin space) is broken but this is a 
physical effect (due the p-p Coulomb interaction and -to a very small extent- 
to a piece of the strong interaction)

These spuriously broken symmetries must in principle be restored 

P. Möller, T2 LANL



  

Connexion between the symmetries of the density and of the V
HF

 potential : 

The coherent symmetry theorem

Given a symmetry generated by some operator S (e.g. a component of the 
angular momentum j

x
 for a rotation around the Ox axis)

Assume that [v , S] = 0 
and that the subspace spanned by the occupied states   is invariant 
under the application of S (invariant by rotation along Ox in our example)
Then V

HF
 constructed from the set is such that    [V

HF 
, S] = 0

In simple terms the symmetry properties of V
HF

 depends on the symmetry 

properties of v and of the Hartree-Fock solution

To restore broken symmetries 
one reconstructs good symmetry
states by adding solutions with 
appropriate weights (e.g. to make 
a spherical state from a deformed solution)

[∣ ϕk > ]

[∣ ϕk > ]

makes a 
spherical
object

Superposing 
deformed 
ellipses



  

First example of treatment of correlations :
Including pairing correlations à la BCS

One desires to mock up a state including 0- 1- 2- … pairs 
with the Bardeen Cooper Schrieffer ansatz for an even nucleus

where the products runs over a pair of states which are Kramers degenerate
(if H is unchanged by time reversal symmetry its eigensolution comes by pair 
of states – a Kramers pair - having the same eigenvalue and which are 
conjugated by time reversal one from the other). 
We define positive i states as such (e.g. as in the axial symmetry case) that 
their K (third component of the angular momentum) is positive. 
Their time reversed pair companion would then correspond to a negative i.  

We define the u's and the v's to be real
For the BCS state to be unchanged by time reversal, one chooses 

∣ BCS> =∏pair i
(ui + vi ai

†ai
†) ∣ 0 >

vi > 0 and v�i < 0 (if i > 0)
ui > 0 (i > 0 or < 0)

∣ui∣=∣u�i∣
∣vi∣=∣v�i∣



  

For the BCS state to be normalized (the one body states i being normalized) 
one has   for all i. The    parameter corresponds to the 
occupation probability of the state i (and also of its time reversed) 

The BCS wavefunction is a sum of Slater determinants having 
0, 2, 4, … ,N-2, N,  … particles, thus breaking the particle number symmetry 
This is of course a serious drawback of this approximation
One fixes the mean value of the number of fermions to a given value N by 
using a Lagrange parameter λ (called the chemical potential) in a variational 
process described below. Typically for deformed heavy nuclei one has for 
each charge state

The variational solution of the BCS problem is obtained by making the 
variation with respect to the sets   and as

yielding the set  and 

 

ui
2 +vi

2 = 1

√<(N�< N >)2 > = 3�4

[ vi
2 ]

vi
2

[∣ ϕi > ]

δ[ H �λn N n � λ p N p ]= 0

vi
2 =

1
2

[1 �
(ei � λ)

√∆i
2 + (ei � λ)2

]

ui
2 =

1
2

[1 +
(ei � λ)

√∆i
2 + (ei � λ)2

]

[∣ ϕi > ]



  

In the above the pairing gap is defined by

Secund example of treatment of correlations :
Including large amplitude collective correlations in the Generator 
coordinate (GCM) approach

One performs a variational calculation for a trial wave function which 
corresponds to a mixing of states 

where the                 are solutions of e.g. variational calculations under a 
constraint on a operator Q whose eigenvalue is noted q
Solving

one has to solve the following eigenvalue problem to get the f(q) solutions

∆i =�∑ j>0
<ϕi ϕi ∣ vres∣ ϕ̃ j ϕ j > u j v j

∣ Ψ >=∫ f (q) ∣ Φq > dq

[∣ Φq >]

δ [
<Ψ ∣ H ∣ Ψ >

<Ψ ∣Ψ >
] = 0

∫<Φq ∣ H � E ∣ Φq ' > f (q') dq' = 0



  

In practice, one has to be careful to remove from the space spanned by the 
set               states corresponding to zero eigenvalues of the norm matrix

This approach might also be used to restore symmetries (in that case the f(q) 
might be known by theoretical arguments beforehand (one has « just » to 
perform the integration on the relevant q's)

Alongside an example 
of complicated
multiple GCM 
calculations :
projection on spin 0
followed by 
a mixing of
different quadrupole
deformation states  

[∣ Φq >]

N qq' = <Φq ∣ Φq ' >


