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Part 1:
Going back to quantum mechanics

* |dentical particle and many-body problem

* Approximations for stationary states — variational method



The many-body problem

The wave function

The wave-function for N-body system = W(ry, 1,73 ... Ty, t).

|W(ry, 15,73 Ty, O) 231 d3rd3 s . dB3 1y
> gives the probability of finding particles #1 within volume element d3r; centered around r; etc.

The normalization condition for the wave function / d3rq / d*ry - - - / W (F1, Py . P Dy = 1

The Hamiltonian Commutation relations

We can generalize the one-body 3D Schrodinger equation into N-

Operators acting on different
body case such that

particles commute, for e.g.

N P2 N 52 A Ty
: [Xj, Px]=ihojk
H Zmﬁ‘}{?l“-- ,IN, 1) va +I{11.H. e o | A .
= [Px_,:"' Pr.-f(] = 0
[—t:l jfk] =0

forj,k=123..N



The many-body problem — stationary states

The solution for a time-independent case

When the potential does not dependent on time V(r,t) = V(r), the general Schrodinger equation

-

0 L . . - .
ih ﬁ_flp{rlﬂ ra, ..., Fn. )= HY(r, 72, ..., 'y, 1)
C

Is written as

With the wave function now given by

P (i, 72, o P t) = wlri ra, .o .y ry) g IEHR



The many-body problem — permutation operator

Interchange symmetry

Let us denote &; to represent coordinates of the particles (position, spin and
other internal degrees of freedom).

We define an operator Pij acting to interchange the i;;, and j;, particle such
that
Pip(&y, &y &y &) = (&, En)

Applying two successive operations of Pij on the wave function, we have

PE(&1, i & 0) = Prpp (81 &y i) = (&0, .....fN)

Therefore[ﬁizj = 1and Pij = il]

e [ Pijp(§r, G 6o fn) = 281, 8§ E) }
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The many-body problem — System of indistinguishable particles

Unlike macroscopic objects, identical particles cannot be distinguished. Why?

Physicists are only able to specify a complete set
of commuting observables to identify a particle.
Nothing more!

Detector Dy Q/ Detector D1 Q/

K 2 L S_'.‘
& " @ —9
(r —8)

2 2

Detector Dy Detector Do

The probability must remain the same with
interchange of particles.

(&, & & &) = [W(E & & &)

The uncertainty principle limits the exact information
on the location of the particle.

Consequence:

Symmetrization postulate says that system with N
number of particles is either totally symmetric or
antisymmetric under interchange of particles.

The symmetric w.f. for two-particle system is

ws(c1, &) = E [ Wny (S1) ¥Wny (S2) + ¥ny (g_'-*)*/”'ng(e_l)]

While the antisymmetric part is

E [ */f"nl(t:_l)f/fng(gl) = f/fnl(gz)f/fnz(e_l)}

Wa(t:b & =



The many-body problem — System of identical non-interacting particles

For a system where all particles have equal mass and experience the same potential i.e. V;(&;) = V(§;), the
Schrodinger equation for the whole system can be reduced into N identical one-particle equations:

h? .
[__VLZ + V(El)] lpbnl- (&) = gnilpni (&)

2m

With the total energy of the system given by a sum of the single-particle energies &, ; E = ZIL-V En;

If the wave function is valid, it means that one

How about the total wave function? can identify particle #1 at &, #2 at &, etc.
Can we write it as: —>
N But there is no way to distinguish identical
Un,ny,..ny (El, N SR S EN) = ntpni (&) microscopic particles.
i=1

No for two reasons The wave function do not have definite parity.
— For identical particles, the wave function must

either be symmetric or antisymmetric.




The many-body problem — System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions
The symmetric wave function is written as:
Two particles system

ws(l1,82) = [ Wi (S1) Wiy (S2) + W (&2 ff"ng{*:l)]

- -

= ﬁ ; fs*ffnl(:l)lmrg{*:l)-

—

while the antisymmetric wave function is:

Walc1,62) = ﬁ[’f*’m{{l)fﬁng{?) ”fnl(— :"ffna'[u )]
- L Wil’?l(ﬁ::]_) Wiy (-::)
\/? Wny (1) Wny(S2)

I - ; ’
f— ﬁ Z(—I]PP!#HI (i-;_l :”J"’"Hg(‘-.-_l)
— P



The many-body problem — System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions

The symmetric wave function is written as:
Three particles system

ws(c1, €2, ¢3) = [ *f’f"nl{tfl) Wn, (i;l]lffnﬂi:i) + Wn, (c1 )lffng{i-:}]’f—’nj (c2)

3!
Y (E2) Y (1) s (E3) + Yy (2 yma (E3) yms (61)
+ Wny ($3) Uy (ED) Y3 (E2) + Wy (63) Yy (E2) Wi (61 F]
1 : = farg [
- ZP’f"‘”l{?l)%!z(?:)'ﬂng(e?ﬂ
V31 5

while antisymmetric wave function is:
1

Z(_l)Pﬁ’!’ni(':1)’f’n;(*:l:'b’fng(ifi)
P

9

1 yn(€1)  wn (S2)  wny(S3)
=—=| yn, (1) wn(S2) wn,(S&3)

ns (1) Wn(S2) Wi (S3)



The many-body problem — System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions

The symmetric wave function is written as:

Ws(€1, €2, -- -, EN) =

ﬁ\

Z Uy GO Wy (E2) -+ Yy (EN)
P

while antisymmetric wave function is:

alé1, &, .. EN) = —,_Z )Y (E0) Yy (E2) -+ Wiy (E)
J..- P

Wn,(C1) v (S2) - i (EN)
~ 1 fffng‘:i:l) 'f‘fﬂg{%:l) nie an{i:N)

Walc1, €2, EN) = T ; i .
WHN{*:I\J ' J*.'_.w.,-{;l) w0 Hy{:N:'

Pauli exclusion principle

» Ifny =n,, Y, = 0.

» No two particles can occupy simultaneously the same
quantum state of the same fermionic system.

Generalizing to many-
particle system

The N X N
determinant is known
as Slater determinant



The many-body problem — System of identical non-interacting particles

Symmetric and antisymmetric components of the spatial and spin wave functions

The total wave function involves both spatial and spin part and can be written as:

WYiry. Sli ?;;,Sg: e PR SN) = Wwiry, P2, ... N ';{Slq S; .Smr
L I{ f

Spatial Spin

For fermions, total wave function must be

For bosons, total wave function must be symmetric. . .
antisymmetric.

l/)s(f)l» 772: 771v))(s(771» 72: 77N)

e _ ‘Pa(FLFz; ---FN)XS(FLFZ; ---FN)
boson —

b
5 R 5> o - Phoson

r rr = = 4
lpaOl;]Zr ’N)Xa(llﬂz: ]N) lps(rl,‘r'—)Z’ ---T'N)Xa(’_)l' 7_>2, ""N)



Part 1:
Going back to quantum mechanics

dentical particl I bod o

* Approximations for stationary states — variational method



Approximations to stationary states — time-independent case

Time-independent » When exact solution is available.

perturbation theory

2 S 5 . The case under study assumed to
o St Hf’ be only slightly changed from the
case of the known solution.

v

To obtain eigenvalue E,, and
eigenfunction |¢,,) to time-independent
Hamiltonian without exact solution

ﬁ|¢n> = En|¥n)

Wentzel-Kramers—

v

Exact solution is NOT available.

Brillouin (WKB) Method

v

When classical limit is valid i.e. A — 0.

_| Potential remains constant over a region

\ 4

Exact solution is NOT available.

| of the order of de Broglie wavelength.

| Useful to estimate ground state

Variational method

| and fist few excited states.

The form of wave function is
qualitatively known.

\ 4




Approximations to stationary states — Variational method

Variational equation

Instead of solving the eigenvalue equation H|y,,) = E,,[1,,)
directly, the aim is to solve variational equation

SE[] = 0
with
_(w|Hp)
EWL ="y

If |) depends on parameter «, then E also depends on a.

Aim: Vary a to minimize E.

Solving the variational equation;

_ (wlAly) sl Al =
5ﬂw_6<ww = SE[Y] = §(p|H|p) =0

We then have

S(|H[w) = (sp[H|p) + (w|H|s) = 0

i.e. varying (6 |H|y) is equivalent to varying its complex
conjugate term.

Approximate solution is always higher or equal to the exact solution E,

Full Hilbert space

Ey <E' <E"

Expand the wave function |W) as |Y) = Y., a,|¥n)
with H|1/Jn) = En|¢n>

The quantity E[y] is then

Bl ==ap

E a, |?
> Oan nI

—E
Lnlan|? °

E > E,

Parity symmetry

EII




Approximations to stationary states

@Guess the form of initial wavefunction
Note:
» takes into account all physical
properties e.g. symmetries,
number of nodes etc.

» adjustable parameters (e.g.
aq, 5, ...) to represent information
that we are not sure off.

Insert values of (a4, -, ...) to obtain
approximate value of energy

— Variational method

Write the mathematical expression for total
energy depending on the various parameters.

(Y(ay, ap, )| H|W(ag, az, ..2)
E(al’ 2 ) - <¢(a11 Ay, ... )ll/)(ali Ay, ))

@Search for the minimum energy by minimizing
E with respect to parameters «;

aE(alx Ay, ... )

=0
aai

To obtain values of (a4, a5, ...) that yield
minimum E.



Part 2: Hartree-Fock approach



The Hartree-Fock approach and approximations

Starting from the many body Hamiltonian operator

H= —Vz + z V(rl,r])
L .

Kinetic
oner Two-body
&Y interaction
operator

Assumption:

The wave function of the system can be approximated by
a Slater determinant

» single-particle (s.p) wave function with s.p. energy e;
obtain after solving the HF equation.

( ) 1 p1(r1) - @1(rw)
Y(ry, 1y, o Ty) = — : :
v ' V! on(ry) on ()

The expectation value of the Hamiltonian with respect to the Slater determinant is

N
(w|Aw) = ;mt 10+ Uzlwwm - 1)}

Exchange term

h
Z [ i) (- 372 ) irar +5 Z [ 0:205679G. 72012050 1

i,j=1

Z QLS DU ®




The Hartree-Fock approach and approximations

Varying the expectation value of the Hamiltonian operator with respect to all single-particle wave functions

5 N Taking variation of
" (‘P|ﬁ|<P) — & j o *V)ey)dr|=0 one single-particle
0% () i=1 wave function with

We have

)
5050 |2

respect to another

59; (y)
§¢;(x)
=0;pd(x —y)

NIE

N
[oimtmemalt > [ [lioe;00bo.y oo oy o

ij=1

Il
=

_% ﬁ: f f cpf(y)fp}f(Y')ﬁ(y' V)o@ (Y)fy dy' — ﬁ: e; j (P;()’)‘Pi(Y)dr} =
=1

,j=1 i

A0 )

N N

- 1 1

t(x)p;(x) + EZ f ®; (y’)ﬁ(x,y’)<pb(x)<pj(y’)dy’+§Z f 0; )0, x)p; (V) pp(x)dy
j= 1=

N l‘V'
1 1
320 | 9107960,@0s 0y =5 Y [ 91090000 Y — erpyx) = 0
j=1 i=1




The Hartree-Fock approach and approximations

N N

\ 1 1

t(x);(x) +§Z f <P7(y’)ﬁ(x,y’)<pb(x)</)j(y’)dy’+§Z f 0; )0, )i (V) Py (x)dy
j= i=

N N
1 1
—52 j o; 00,y )i () ep(y)dy’ —52 f o; WP, ) (V)i (x)dy — eppp(x) =0
j=1 i=1

Relabel the index j to 1< 1<
{ and coordinate o | R 0o 5 [ 010390 D00y
representation y’ to y. i=1 i=1
The force between N
nucleons = z j o; )0(x, Vei)dy ¢ op(x)
vy, x) = 0(x,y) i=1




The Hartree-Fock approach and approximations

Applying the same steps to the other terms, we have the Hartree-Fock equations written as:

{_%VZ + ZN; j W(x, )’1‘/’](}’)}13’} pp(x) — Z: j |<p;*(xﬂ19(x,y 0.y, () dy = ey oy ()

Shorthand notation for one- N
body density matrix h? " .
sl | (160 2RI VIS DY | FICED LESOUNCHLEE ERAE
i=1
\

N
pO) = ) Pi 00 S
i=1
J Schrodinger-like equation — to solve for e, and ¢, (x)
p(Y) = ) 0 @)
i=1 2
h? " Non-local _
=57+ [ )9y {9y = ey (x)
SUMMARY: 2m term __| |

Reduction from many-body
to one-body problem. Hartree term Fock term




Example: Case of density-dependent interaction

Assuming that the potential is written as:

V(r,r) =ad(n —r) + bP(
With a and b as parameters to be adjusted.

n + Y]
2

) 6(ry —12)
The expectation value of the potential operator is
(7) = a | | pG0pG8Gs — r)dndr,

+ha [ [ popG0 (A52) 80— )dnr,

=a [pz(r)dr+ b {p?’(r)dr

The variation of the expectation value of the potential is then
(V) = ZaJp(r)gob(r)cﬁ(r — x)dr + 3b j p2(M) e, (r)6(r — x)dr

= 2ap(x) @, (x) + 3b p?(x)@p (x)

Ignoring the Fock term, the Hamiltonian is then written
using the potential obtained previously

(V) = 2ap(x)pp (x) + 3b p2(x)pp (x)

The Hartree equation is written as

hZ
(—% + [2ap(x) + 3b Pz(x)]> @p(x) = eppp(x)




The Hartree-Fock equation: non-linearity

N
nput ———— ) = ) 9i Ofe))
i=1

h? ' - [
{—%Vz + f piy)ﬁ(x,y)dy} @p(x) —Z f p(x,y)ﬁ(x,y)%(y)dy = e“b<pb(x)

Eigenfunction Eigenvalue

l _ 1
|

Solutions




Steps to solving the Hartree-Fock equation

Guess an initial set of single-
particle wave functions {@;(x)}

Construct density p(y) = YN, F (1)@ (y)
and therefore the potential

New s.p. Solve the eigenvalue equation
states the ( 72

same as
before?

— u(x)> Pp(x) = eppp(x)

2m




art 3.
ncluding pairing correlations




Why pairing is important?

Pairing is important for
. - : non closed-shell nuclei
Mass parabola showing the effect of pairing correlations

[taken from Introductory Nuclear Physics by Kenneth Krane]

Odd-odd nuclei chain are less
stable (less binding) as
compared to even-even nuclei.

49ln

56Ba

ag9ln

s0Sn

Nuclei with even numbers
of protons and neutrons
saXe » Extra stability

Most stable nucleus for
the A =125 chain



How to include pairing into the Hartree-Fock framework?

Starting from the many-body Hamiltonian

N N
A= Zfi + Z 7 (r.7)
i

ij=1

We introduce an average (mean) potential such that

A= Z(fi +0;) + z P (r7y) - T))

ij=1

WJK V,
Y
I\
= Zﬁsm

Residual
interaction
Initially assumed

Is the one-body to be zero

Hamiltonian -
Pairing
correlations

Within the HF framework, pairing correlations are treated
using the|BCS approach]

v

Proposed by Bardeen, Cooper, Schrieffer
to explain superconductivity in metals

Assumptions:
Condensation of two fermions (called as Cooper pairs)
into boson-like state.

Attraction between the Cooper pairs is strong enough to
overcome Coulomb repulsion between similar charges.

Note:
HF+BCS as an approximation to Hartree-Fock-Bogoliubov
approach. Found to be equivalent for nuclei near the line

of stability.




The BCS wave function

BCS wave function for ground-state of an even-even nucleus is written:

| A vacuum state

|IBCS) = « HVxlail 2 Jj0)
ﬂk:o

The z-component of
angular momentum |«

v

with no nucleons

J2 @) = Q| o)

Probability for the

Creation operator
» Remove 1 particle in
conjugate state k

A

single-particle state

Simple illustration of BCS
wave function
(g.s even-even nucleus)

k to be empty. Creation operator
» » Creating 1 particle — .
Probability for the in s.p state k. - _I S F
single-particle state [« I :
k to be filled. Q,>0] |
Normalization of the BCS wave function yields : i
|
wesipes) = | | (uf +v7) ex S | .
Q>0 or e T | k k
With u,zc + ‘U,% =1 k I '



The BCS Hamiltonian & particle number uncertainty

The Hamiltonian to be solved has the form of .
0 =q % N R A term to constraint the number of
particles (nucleons) to a desired value.

Such that

ﬁ’ = Z(ek - /1 a,'c"ak + z (klzlvlk'lz'*fgak'akrak, -

Or Q) The particle number operator is defined as
| v N = Z ay ag
A is a Lagrange multiplier Annihilation ' Qe _
whose function is that of a operator Expectation value of particle number with

respect to BCS wave function is

(BCS|N|BCS) = 2 2 Vi

chemical energy.

Residual pairing interaction o Q>0
term acting on nucleon pairs
Choice of residual interaction The uncertainty in the particle number is
* Density dependent delta (AN)? = (BCS|N?|BCS) — (BCS|IV|BCS)2 Weakness of BCS approach:
* Gaussian Number of particle is not
e Separable pairing =4 z UZVE conserved!
* Seniority force Qx>0




Consequence of BCS pairing on calculations

Guess an initial set of single-
particle wave functions {¢;(x)}

Construct density
p() = Tt v e ()

Output from BCS calculations: and therefore wne potential

F=a{-

5 2 = A 24 A2
[( k ) ] Solve BCS equation

E;c 5 yielding vZ and u?

1 _
2 =
=3\ @y A !

New s.p.
states the

Solve the eigenvalue equation

hZ
(— — - u(x)) @p(x) = epep(x)

same as
before?

2m
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Part 4:

nomenological nucleon-

eon Interaction



Properties of nucleon-nucleon interaction

Dependence on inter-nucleon distance

—4
Force [10™* N] When the nucleon

gets too near, they
repulse one another.

{L

(0]
2
(%]
=
o
g
0 >
Nucleon
separation But at short distance, nuclear force
[fm] is stronger than Coulomb allowing

it to bind protons together.

attractive
NN

Nuclear force is attractive when nucleons are
further from their optimal separation distance.

Optimal distance
between two nucleons



Properties of nucleon-nucleon interaction

Dependence on spin orientation
We begin by identifying the eigenvalue of the spin operator as m
$2 =S(S + 1)h? :
where § is the total spin of neutron and proton i.e. Spin, S =1 channel
$ = S“vn + S“vp (Triplet state)
NB: In this case, the lowest single-particle state has orbital angular

momentum [ = 0.

Inserting the equation into the first one,
we obtained

= (Sn+3,) =8, +38," +25,-5,

$

Spin, S = 0 channel
(Singlet state)

A A 1 . 2
. =—(S?2 — —
Sn-Sp=5(52=5" =) —
‘ -|_T ; Triplet state [ Attractive force
(gn ' gp) =9
(S, _ 5(5+1)—— 1% .
n > \_T ; Singlet state




Properties of nucleon-nucleon interaction

Dependence on tensor component

S]_ - I(C}I xc}:)(:] X Y:(F)I(m x 3(61 F)(&l .F)_al -53

prolate

B | V-8,

oblate

i 3

Sl?. -

Diagram taken from H. Sagawa and G. Colo [arXiv:1401.6691v2]

-1

repulsive

When the orientation of the spins are
aligned with the relative distance of
the proton and neutron.

pancake



Properties of nucleon-nucleon interaction

Dependence on spin-orbit coupling

The expectation value for the spin-orbit coupling is given by:

2
(f-§)=h7[j(j+1)—l(l+1)—s(s+1)]

Recall that the total angular momentum
L+ 1/,

-1/,

and with s = 1/2, we have after substituting j into
the equation

j:

([ r2
Sl sforj=1+1/

hZ
k_7(1+ 1);forj =1- 1/2

Attractive when spin and orbital

angular momentum are aligned.

3p
2f

1h

3s
2d

1g

1f

2s
1d

1p

1s

Magic numbers were explained after
introducing spin-orbit term

Wood Saxon

~lEE) (e

-
-
- Pid
O

- - -
aaaaaaa
aaaaa

-
-
-
-

=
—"
-,

Wood Saxon
+ spin-orbit

(s0)

[EEN
N

PN

D =
ano

AN



Choices of effective interaction

HF calculation of 208Pb
Vautherin & Veneroni
Phys. Lett. B 29, 203

1969

1956 1972

Skyrme’s HF calculation with
(zero range) Skyrme’s interaction
interaction for spherical nuclei

Vautherin & Brink
PRCS5, 626

Gogny’s
(finite range)

Relativistic mean-
_ _ field model
interaction Walecka, Ann.
Phys. 83, 491
(1974)

HF+BCS for
deformed nuclei
Vautherin
PRC 7, 296

Relativistic mean-field
model
Boguta & Bodmer,
Nucl. Phys. A 292, 413
(1977)




Choices of effective interaction: Gogny interaction

Spin-exchange operator

A _ 1 A A
= 5(1 +o- 0'2) Density dependent,
zero range term

Finite range term

A

.\
. - —(r1p/ ;)2 A A H B [ 5 L F1T T2
0 Gogny(T12) j; e ) @) +B P~ { -~ PP L)L o) 8(r12) X p?| =5

[+ l@g 6'1 = 6'2) " l’;? X 5(1’12)1"(

|

Parameters fitted to Spin-orbit zero range
experimental data term




Choices of effective interaction: Skyrme interaction

The Skyrme interaction can be written as

V(ry,r) :[Ve{l‘l I )]~EV’DD(T1«I‘2}+E’}.Q{I‘1 : 1'2)]

v
Central term

Ve(ry,r2) =to(1 +x0P5)0(r1 —r2)

(t1 +x1P5)[8(r] —1p)K? +k%23(1‘1 —12)]

J |

+12(1 +x2P5 kT8 (F1 — P2 )k

Density dependent term

| _ ~
Vpp(ri,12) = Ef.%(l +x3P5)p% 6 (] —12)

¥
Spin-orbit term

Veoul X 20 ) = ﬂ-Vg(a(-” 4;—0'{2-)) k' x o(rj—nmJk

Momentum operator

T 7 2 —
k_—(v_v)
oF 1 2

The Skyrme parameters are t;, x; and W, with
i = [1,2,3] are obtained from fit to some
nuclear properties.



Part 5:
Skyrme’s energy density
functional



Skryme energy-density functional

The expectation value of the many-body Hamiltonian operator for a wave function written as a normalized
Slater determinant is

E = (Yur|H|YHF) :/ FE(r) dr Z/ (Jﬁm(l‘)é*ﬁﬁ(l') +=%-”DD(1‘)+ﬁf§.o(l')+%mu(l‘)) dr

They are written as Hamiltonian densities with contributions from

Kinetic energy = 7, (r) = (1 _ l) i
; A/ 2m

2 2 . <2
Central F(r) =B1p*+B1os* +B3(pt1—j*) +B1a(J —s-T)+BspAp +Bigs-As

= 2
—Z{BaqurBHs +Balpyty—ic) +Bis( g —s4-Tg) } +Bepgpg +Biosg - Ls,

Density s il P ) , }
Zpp(Tr) = P~ |B7p~ + B12s™ + ) (Bgp, + Bi3s
dependent pp(r) =p~|Bp - 2;( 8P +B13%y)

Spin-orbit | .,(r) =Bo|pV -J+j-V xs+Y (p,V-Jg+iq-V x sq)}

=

-

\ I 3
Coulomb %@Hf(r) ~ ;pp(r)VCD{,r) — Efr(



Skryme energy-density functional — coupling constants

The coupling constants B; with j = [1,19] are written in terms of the Skyrme parameters ¢;, x; and W,

B =201+ 32:_%0(;+\0)

By = %[n (1 —?') +15(1 +%)} By = —%[r] (%ﬂ-]) —r2(5+.r2)}
Bs=—— [ (1+0) ~n(1+2)] Bo = -2 [31 (5 +31) +12(5 +12)]
B =2 (1+3) Bs:—%(%ﬂ*)

Bgz—? Bm—lfo‘to

Btl——ifo Bla:%m;

Biz = —,_% Bis = —=(rx1 +nx)

Bis = é(ﬁ —1) Big = —%(3?’1-\'1 )

Bio = o= (311 +12)



Skryme energy-density functional — local densities

Time-even local densities
2

I ] &ide
K 507, (B — (1 —— -
inetic energy = #,,(r) (1 AH” Tl‘

Kinetic energy density

o(r) = YoF (Vigd'(r)) - Vigdl(r)
k

Spin-orbit

Particle density

p(r) =Y vi[od (r)[ge](x)
k

F.0(r) = Bg pV-J—|—j-V><S+Z pq -Jq+jq-V><sq)
(g ¢ |

Spin current density

Tv(0) = 2 LR 00 ()0l (1) — (Vuldel () oy [ (r) )

k



Skryme energy-density functional — local densities

Time-odd local densities
» Do not contribute for ground-state of even-even nucleus

Spin kinetic density

Central Tu(r) = YR (Vg (1)) - 0 Vgl (r)
k

<
e

2 ) » 2 :
. (v) = B1p* +Byos” +B3(pT—j°) + B (7 —s{T

! > 2
l—Z{ng&—|—B[;S§—|—B4{pq‘fq—J§] -|-BI5( J 4 —Sq-Tq)}!—ngq&pq —|—Blgsq-&sq
q

+Bsp/Ap +Bigs-As

Spin-orbit Spin density
s(r) = Zk‘,v%[fi’k]T(")G[tﬂk](r)

H.0(r) = By [pV-Jﬂ-V xs+Y (PgV-Jg4igl v xs”
q 1

Current density

i) = 5 LR (V1901 ) 9el) ~ 194 (1) 10610r) )

k




Application of variational principle to obtain HF equations

The Hartree-Fock equations to be solved iteratively are obtained by varying the total energy with respect to ¢;

o
50;(1) (E[“”f] L o [aria )=°

constants.

The HF equations in coordinate space given below are written in terms of local densities and Skyrme’s coupling

<r|f1};{g):|¢f\> = -V. ( " V[Qﬁ;\](l’)) - (U ( )+ 5{;}}(](“0”! )M)f\]( )

2my(r)

+5W0(r)‘(ng[¢ﬁ'](l’))“"Z{( guv (1) Oy Vi [¢r (1) )

+Vyu (Wqﬂv( )vak](l‘)) } 5

{540 - ola ) v - ( (@r) G)VIoir))

Time-odd
potentials

1

A

gt

) - V[e](r) +V

—

(Aglodn) }

Vanishes when time-reversal
symmetry is preserved.




Breaking of time-reversal symmetry at the mean-field level

BCS calculations
Find the maximum overlap

between one s.p. state with

its time reversed conjugate

(dor|T(d-anr))

Even-even nucleus
Ground state
K™ =0%

Adding an unpaired
nucleon causes core
polarization — breaking of
time-reversal symmetry

Time-reversal
symmetry broken

Single-particle state
labelled using Q; and
parity T quantum
numbers among others.

Projection of the single-
particle total angular
momentum operator on
symmetry z-axis

(Prljzlpr) = Qi

Even-even nucleus
Ground state
T — T
K™ =Qp

Assumption:

The total angular
momentum of the whole
nucleus is given by the
unpaired nucleon.




Part 6:
Expansion of s.p. wave functions



Expanding on deformed harmonic oscillator basis states

HF equation to be solved: The wave function can be expanded on

any orthonormal basis states for e.g.

v

~ Cartesian coordinate
hyr|k) = ex|k)

O (r,0,q9) XqZC Po (1,0)

Deformed harmonic oscillator

a={n.,n,l,s,}
r = {r,z, @} (cylindrical coord.)

EHFqbk (rl o, q) = ek¢k (1", g, q)

v

Recap: Recap:

1-dimensional SE with harmonic oscillator potential Radial equation of hydrogen atom

P dyix) 1 5, R d*U(r) |10+ DA* &
i ey Wy [N O O ; S et ——|UuG)=EUG
3 + S M w(x) = Ey(x) 20 an 22 " (r) (r)
Eigenvalue: Eigenvalue:
g 2 1 Associated Laguerre
1 . . il D .. .
F - (n N _) . Hermite polynomial E, = e polynomial

Eigenfunction: | Eigenfunction: 3

!
2r . 2r
( i — 1 —xgxz‘\rg X R;-.rf (i") s M?f .’/H(FQ i{:—{l
Wn(X) e n | — — —
vV A2 nlxg X0 y

|




Expanding on deformed harmonic oscillator basis states

When expanding the s.p. wave function on
deformed harmonic oscillator it is written as

XqZC q)OC (I‘,G)

O (r,0,q)

Y. (:J —

v

Gﬂa(ﬂ G) = Fs;(o-.}

WH:[:) "F”j_(r]

]-"ll _E2 £
Nn; 8“ f 1‘5’ /2 Hn; (‘;) <
1

—

ﬁz =V ”Ezl; h

Hermite polynomial

A truncation in the exF

QJJ_(!IJ_—|—] —|—r){.0

h

ansion is made usmg

n, + %) < hay (N{) + 2)

B = \/:‘HFOJ_

Assoc. Laguerre
polynomial

Two parameters to be optimized namely

s ma —
ﬁO — 7 1=

with w3 = w2 w, for a given basis size N,.




Part /:
Examples of HF+BCS calculations



Global microscopic calculations of ground-state spins and parities for odd-mass nuclei
L. Bonneau, P. Quentin and P. Moller, Phys. Rev. C 76, 024320 (2007)

Calculated GS spin-parity compared to experiment Calculated GS spin-parity compared to experiment
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“...the overall agreement is similar for the Slll and SLy4 Skyrme forces and about 5% less
good for the SkM=* force.”




Large-scale self-consistent nuclear mass calculations
M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz and P. Borycki, Int. J. Mass Spectrom. 251 (2006)
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Band-head spectra of low-energy single-particle excitations in some well-deformed,

heavy nuclei within a microscopic approach
M.-H. Koh, D.D. Duc, TV. Nhan Hao, H.T. Long, P. Quentin and L. Bonneau, Eur. Phys.J A52 (2016)
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Part &:
Constrained Hartree-Fock



Constraining to a desired nuclear shape I

f1 —4 2
Unconstrained HF calculation yields solution at the local H:!" v -
extrema (minima). A constraint is added to study nuclear
properties at a certain deformation. : 1\ :
A' = H + f(pu{{Oum) .

v

v Parity asymmetric shapes

Multipole moments Octupole moment

Q30 = (030) = /U’l’P(I‘J rY)(8,9)

v

Axial & parity symmetric shapes v

Axially asymmetric shapes
A oy BB
Quadrupole moment Q20 = (Q20) = /drp(r){Q;, =r) Non-axial quadrupole moment

0n = (On) = /dl‘ p(r)(x* —y?)

Hexadecapole moment Q49 = (Q40) = fdr p(r) P Yf(ﬂﬁqo)



Ways to constraint nuclear deformation

£l

Linear constraint

f(lllr (élm)) = —#@zm)

Search for a point in which the slope is equal to u.

Quadratic constraint

: B o .
fui! {Qe‘m}} = ECJHQ.I'Jri) _,Uf)“

Calculations with no constraint

f(u(Qun)) =0

k 3

# B Q yields solution at the local extrema.

From H. Flocard, P. Quentin, A.K. Kerman and D.
Vautherin, Nucl. Phys. A 203, 433 (1973)




Part 9:
Application of HF+BCS to large
nuclear deformation




Theory of Nuclear Force

DFT Solver
Technology
———————————————————— L e B
| STATIC DESCRIPTION i1 I
: OF FISSION _ \ 1 I
Potential Energy 1 Initial
Surfaces , I ; state I
|
Collective : | |
et Scission . 1
configurations I | |
: I TDDFT I
————————————————— L1 SN e — |
-1930 R [ e it i o i it " [
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1940 | | FISSION DYNAMICS ! Fragment kinetic
1950 I i | energy (TKE)
I Minimization of
I the action |
Ll e Fragment
excitation

energy (TXE)

i

N. Schunck & L.M. Robledo
Microscopic theory of nuclear fission: a review Fission fragment

charge and mass

Rep. Prog. Phys. 79, 116301 (2016) distribution




Calculations of deformation energies

Deformation energy of odd-mass 23°Pu
M.-H. Koh, L. Bonneau, P. Quentin, TV. Nhan Hao
and H. Wagiran, Phys. Rev. C 95, 014315 (2017)
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N. Schunck, D. Duke, H. Carr, and A. Knoll,
Phys. Rev. C 90, 054305 (2014)
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Fission cross-section modelling

Fission cross-section modelling

Transmission

Stationary states in the potential well
& top of fission barriers

T T T
ol (E,) = k_2(2J+ DT (E,)< coefficient(s) gy
€ across the barriers g =y
E* [MeV] Transition states and B
H = EL - oty ] /
E JY) = Z 95 EJVM J+ P(E, V (¢)) p(e,J.m)de Class~-| states e RN
E’d 61 A o =3
\\ : ‘e Ji=2
l | SR —————— . :__ \ i=1
v/* _ E), ;| Barrier penetrability ' P
PIVEVE) = 1+ exp(27 o within Hill-Wheeler || 4 First well 1
d approach i
37 ;
21
i vibrational
ik : slates
Input parameters Deformation energy: ) i
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