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Part 1: 
Going back to quantum mechanics
• Identical particle and many-body problem
• Approximations for stationary states – variational method



The many-body problem

The wave-function for N-body system Ψ 𝑟 , 𝑟 , 𝑟 … 𝑟 , 𝑡 .

Ψ 𝑟 , 𝑟 , 𝑟 … 𝑟 , 𝑡 𝑑 𝑟 𝑑 𝑟 𝑑 𝑟 … 𝑑 𝑟
 gives the probability of finding particles #1 within volume element 𝑑 𝑟 centered around 𝑟 etc.

The normalization condition for the wave function

The wave function

We can generalize the one-body 3D Schrodinger equation into N-
body case such that 

The Hamiltonian

Operators acting on different 
particles commute, for e.g.

for 𝑗, 𝑘 = 1,2,3 … 𝑁

Commutation relations



The many-body problem – stationary states

When the potential does not dependent on time 𝑉 𝑟, 𝑡 → 𝑉 𝑟 , the general Schrodinger equation

Is written as

With the wave function now given by

The solution for a time-independent case



The many-body problem – permutation operator

Let us denote 𝜉 to represent coordinates of the particles (position, spin and 
other internal degrees of freedom).

We define an operator 𝑃 acting to interchange the 𝑖 and 𝑗 particle such 
that

𝑃 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉 = 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉

Interchange symmetry

1

2𝜉

𝜉

2

1𝜉

𝜉

𝑃 𝑃Applying two successive operations of 𝑃 on the wave function, we have
𝑃 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉 = 𝑃 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉 = 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉

Therefore, 𝑃 = 1 and 𝑃 = ±1

i.e. 𝑃 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉 = ±𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉



The many-body problem – System of indistinguishable particles

Unlike macroscopic objects, identical particles cannot be distinguished. Why?

Physicists are only able to specify a complete set 
of commuting observables to identify a particle.
Nothing more!

The uncertainty principle limits the exact information 
on the location of the particle.

The probability must remain the same with 
interchange of particles.

𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉 = 𝜓 𝜉 , … 𝜉 , … 𝜉 , … 𝜉

Consequence:
Symmetrization postulate says that system with N 
number of particles is either totally symmetric or 
antisymmetric under interchange of particles.

The symmetric w.f. for two-particle system is

While the antisymmetric part is



The many-body problem – System of identical non-interacting particles

For a system where all particles have equal mass and experience the same potential i.e. 𝑉 𝜉 = 𝑉 𝜉 , the 
Schrodinger equation for the whole system can be reduced into N identical one-particle equations:

−
ℏ

2𝑚
∇ + 𝑉 𝜉 𝜓 𝜉 = 𝜀 𝜓 𝜉

With the total energy of the system given by a sum of the single-particle energies 𝜀 ; 𝐸 = ∑ 𝜀

How about the total wave function? 
Can we write it as:

𝜓 , ,…, 𝜉 , … 𝜉 , … 𝜉 , … 𝜉 = 𝜓 𝜉

If the wave function is valid, it means that one 
can identify particle #1 at 𝜉 , #2 at 𝜉 etc.

But there is no way to distinguish identical 
microscopic particles.

The wave function do not have definite parity. 
For identical particles, the wave function must 
either be symmetric or antisymmetric.

No for two reasons 



The many-body problem – System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions

The symmetric wave function is written as:

while the antisymmetric wave function is:

Two particles system



The many-body problem – System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions

The symmetric wave function is written as:

while antisymmetric wave function is:

Three particles system



The many-body problem – System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions

The symmetric wave function is written as:

while antisymmetric wave function is:

Generalizing to many-
particle system

The 𝑁 × 𝑁
determinant is known 
as Slater determinant

Pauli exclusion principle
 If 𝑛 = 𝑛 , 𝜓 = 0.
 No two particles can occupy simultaneously the same 

quantum state of the same fermionic system.



The many-body problem – System of identical non-interacting particles

Symmetric and antisymmetric components of the spatial and spin wave functions

The total wave function involves both spatial and spin part and can be written as:

Spatial Spin

For bosons, total wave function must be symmetric.

Ψ =
𝜓 𝑟 , 𝑟 , … 𝑟 𝜒 𝑟 , 𝑟 , … 𝑟

𝜓 𝑟 , 𝑟 , … 𝑟 𝜒 𝑟 , 𝑟 , … 𝑟

For fermions, total wave function must be 
antisymmetric.

Ψ =
𝜓 𝑟 , 𝑟 , … 𝑟 𝜒 𝑟 , 𝑟 , … 𝑟

𝜓 𝑟 , 𝑟 , … 𝑟 𝜒 𝑟 , 𝑟 , … 𝑟



Part 1: 
Going back to quantum mechanics
• Identical particle and many-body problem
• Approximations for stationary states – variational method



Approximations to stationary states – time-independent case

When exact solution is available.

The case under study assumed to 
be only slightly changed from the 
case of the known solution.

Time-independent 
perturbation theory

Wentzel–Kramers–
Brillouin (WKB) Method 

Exact solution is NOT available.

When classical limit is valid i.e. ℏ → 0.

Potential remains constant over a region 
of the order of de Broglie wavelength.

Variational method

Exact solution is NOT available.

The form of wave function is 
qualitatively known.

Useful to estimate ground state 
and fist few excited states.

To obtain eigenvalue 𝑬𝒏 and 
eigenfunction |𝝍𝒏⟩ to time-independent 
Hamiltonian without exact solution

𝐻|𝜓 ⟩ = 𝐸 |𝜓 ⟩



Approximations to stationary states – Variational method

Instead of solving the eigenvalue equation 𝐻|𝜓 ⟩ = 𝐸 |𝜓 ⟩
directly, the aim is to solve variational equation

𝛿𝐸 𝜓 = 0
with

𝐸 𝜓 =
𝜓 𝐻 𝜓

𝜓 𝜓
If |𝜓⟩ depends on parameter 𝛼, then 𝐸 also depends on 𝛼.

Aim: Vary 𝛼 to minimize 𝐸.

Variational equation

Solving the variational equation;

𝛿𝐸 𝜓 = 𝛿
𝜓 𝐻 𝜓

𝜓 𝜓
⟹ 𝛿𝐸 𝜓 = 𝛿 𝜓 𝐻 𝜓 = 0

We then have
𝛿 𝜓 𝐻 𝜓 = 𝛿𝜓 𝐻 𝜓 + 𝜓 𝐻 𝛿𝜓 = 0

i.e. varying 𝛿𝜓 𝐻 𝜓 is equivalent to varying its complex 
conjugate term.

Approximate solution is always higher or equal to the exact solution 𝐸

Expand the wave function |Ψ⟩ as |𝜓⟩ = ∑ 𝑎 |𝜓 ⟩

with 𝐻|𝜓 ⟩ = 𝐸 |𝜓 ⟩

The quantity 𝐸 𝜓 is then

𝐸 𝜓 =
∑ 𝐸 𝑎

∑ 𝑎
≥

𝐸 ∑ 𝑎

∑ 𝑎
= 𝐸

𝐸 ≥ 𝐸

Full Hilbert space

𝐸 Axial + parity symmetry

𝐸 Parity symmetry

𝐸

𝐸 < 𝐸 < 𝐸



Approximations to stationary states – Variational method

Guess the form of initial wavefunction
Note: 
 takes into account all physical 

properties e.g. symmetries, 
number of nodes etc.

 adjustable parameters (e.g. 
𝛼 , 𝛼 , …) to represent information 
that we are not sure off.

1 Write the mathematical expression for total 
energy depending on the various parameters. 

𝐸 𝛼 , 𝛼 , … =
𝜓 𝛼 , 𝛼 , … 𝐻 𝜓 𝛼 , 𝛼 , …

𝜓 𝛼 , 𝛼 , … 𝜓 𝛼 , 𝛼 , …

2

Search for the minimum energy by minimizing 
𝐸 with respect to parameters 𝛼

𝜕𝐸 𝛼 , 𝛼 , …

𝜕𝛼
= 0

To obtain values of 𝛼 , 𝛼 , … that yield 
minimum 𝐸.

3

Insert values of 𝛼 , 𝛼 , … to obtain 
approximate value of energy

4



Part 2: Hartree-Fock approach



The Hartree-Fock approach and approximations

Assumption:
The wave function of the system can be approximated by 
a Slater determinant
 single-particle (s.p) wave function with s.p. energy 𝑒

obtain after solving the HF equation.

𝜓 𝑟 , 𝑟 , … 𝑟 =
1

𝑁!

𝜑 𝑟 ⋯ 𝜑 𝑟
⋮ ⋱ ⋮

𝜑 𝑟 ⋯ 𝜑 𝑟

Starting from the many-body Hamiltonian operator

𝐻 = −
ℏ

2𝑚
∇ + 𝑉 𝑟 , 𝑟

,

Kinetic 
energy 

operator

Two-body 
interaction

The expectation value of the Hamiltonian with respect to the Slater determinant is

𝜓 𝐻 𝜓 = 𝑖 �̂� 𝑖 +
1

2
⟨𝑖𝑗|𝑉 |𝑖𝑗⟩ − |𝑗𝑖⟩

,

= 𝜑∗ 𝑟  −
ℏ

2𝑚
∇ 𝜑 𝑟 𝑑𝑟 +

1

2
𝜑∗ 𝑟 𝜑∗ 𝑟′ 𝑣 𝑟, 𝑟′ 𝜑 𝑟 𝜑 𝑟′

,

−
1

2
𝜑∗ 𝑟 𝜑∗ 𝑟′ 𝑣 𝑟, 𝑟′ 𝜑 𝑟 𝜑 𝑟′

,

Exchange term



The Hartree-Fock approach and approximations

Varying the expectation value of the Hamiltonian operator with respect to all single-particle wave functions

𝛿

𝛿𝜑∗ 𝑥
𝜑 𝐻 𝜑 − 𝜀 𝜑∗ 𝑦 𝜑 𝑦 𝑑𝑟 = 0

We have

𝛿

𝛿𝜑∗ 𝑥
𝜑∗ 𝑦 �̂� 𝑦 𝜑 𝑦 𝑑𝑦 +

1

2
𝜑∗ 𝑦 𝜑∗ 𝑦′ 𝑣 𝑦, 𝑦′ 𝜑 𝑦 𝜑 𝑦′ 𝑑𝑦 𝑑𝑦′

,

−
1

2
𝜑∗ 𝑦 𝜑∗ 𝑦′ 𝑣 𝑦, 𝑦′ 𝜑 𝑦 𝜑 𝑦′ 𝑑𝑦 𝑑𝑦′

,

− 𝑒 𝜑∗ 𝑦 𝜑 𝑦 𝑑𝑟 = 0

Taking variation of 
one single-particle 
wave function with 
respect to another

𝛿𝜑∗ 𝑦

𝛿𝜑∗ 𝑥

= 𝛿 𝛿 𝑥 − 𝑦

�̂� 𝑥 𝜑 𝑥 +
1

2
𝜑∗ 𝑦′ 𝑣 𝑥, 𝑦′ 𝜑 𝑥 𝜑 𝑦′ 𝑑𝑦′ +

1

2
𝜑∗ 𝑦 𝑣 𝑦, 𝑥 𝜑 𝑦 𝜑 𝑥 𝑑𝑦

−
1

2
𝜑∗ 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑥 𝜑 𝑦 𝑑𝑦 −

1

2
𝜑∗ 𝑦 𝑣 𝑦, 𝑥 𝜑 𝑦 𝜑 𝑥 𝑑𝑦 − 𝑒 𝜑 𝑥 = 0



The Hartree-Fock approach and approximations

�̂� 𝑥 𝜑 𝑥 +
1

2
𝜑∗ 𝑦′ 𝑣 𝑥, 𝑦′ 𝜑 𝑥 𝜑 𝑦′ 𝑑𝑦′ +

1

2
𝜑∗ 𝑦 𝑣 𝑦, 𝑥 𝜑 𝑦 𝜑 𝑥 𝑑𝑦

−
1

2
𝜑∗ 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑥 𝜑 𝑦 𝑑𝑦 −

1

2
𝜑∗ 𝑦 𝑣 𝑦, 𝑥 𝜑 𝑦 𝜑 𝑥 𝑑𝑦 − 𝑒 𝜑 𝑥 = 0

1

2
𝜑∗ 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑥 𝜑 𝑦 𝑑𝑦 +

1

2
𝜑∗ 𝑦 𝑣 𝑦, 𝑥 𝜑 𝑦 𝜑 𝑥 𝑑𝑦

Relabel the index 𝑗 to 
𝑖 and coordinate 
representation 𝑦′ to 𝑦.

The force between 
nucleons 

𝑣 𝑦, 𝑥 = 𝑣 𝑥, 𝑦

= 𝜑∗ 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑦 𝑑𝑦 𝜑 𝑥



The Hartree-Fock approach and approximations

−
ℏ

2𝑚
∇ + 𝜑∗ 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑦 𝑑𝑦 𝜑 𝑥 − 𝜑∗ 𝑥 𝑣 𝑥, 𝑦 𝜑 𝑦 𝜑 𝑦 𝑑𝑦 = 𝑒 𝜑 𝑥

Applying the same steps to the other terms, we have the Hartree-Fock equations written as:

𝜌 𝑦 = 𝜑∗ 𝑦 𝜑 𝑦

𝜌 𝑥, 𝑦 = 𝜑∗ 𝑥 𝜑 𝑦

Shorthand notation for one-
body density matrix

−
ℏ

2𝑚
∇ + 𝜌 𝑦 𝑣 𝑥, 𝑦 𝑑𝑦 𝜑 𝑥 − 𝜌 𝑥, 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑦 𝑑𝑦 = 𝑒 𝜑 𝑥

−
ℏ

2𝑚
∇ + 𝜌 𝑦 𝑣 𝑥, 𝑦 𝑑𝑦 𝜑 𝑥 = 𝑒 𝜑 𝑥

Schrodinger-like equation – to solve for 𝑒  and 𝜑 𝑥

Non-local 
term

Hartree term Fock term

SUMMARY:
Reduction from many-body 
to one-body problem.



Example: Case of density-dependent interaction

Variation of 𝜌 𝑟 with respect to single-
particle state𝜑 𝑥

𝛿

𝛿𝜑∗ 𝑥
𝜌 𝑟 =

𝛿

𝛿𝜑∗ 𝑥
𝜑∗ 𝑟 𝜑 𝑟

= 𝛿 𝛿 𝑟 − 𝑥 𝜑 𝑟

= 𝛿 𝑟 − 𝑥 𝜑 𝑟

𝑉 = 2𝑎 𝜌 𝑟 𝜑 𝑟 𝛿 𝑟 − 𝑥 𝑑𝑟 + 3𝑏 𝜌 𝑟 𝜑 𝑟 𝛿 𝑟 − 𝑥 𝑑𝑟

= 2𝑎𝜌 𝑥 𝜑 𝑥 + 3𝑏 𝜌 𝑥 𝜑 𝑥

The variation of the expectation value of the potential is then

Assuming that the potential is written as:

𝑉 𝑟 , 𝑟 = 𝑎𝛿 𝑟 − 𝑟 + 𝑏𝜌
𝑟 + 𝑟

2
𝛿 𝑟 − 𝑟

With 𝑎 and 𝑏 as parameters to be adjusted.

The expectation value of the potential operator is

= 𝑎 𝜌 𝑟 𝑑𝑟 + 𝑏 𝜌 𝑟 𝑑𝑟

+𝑏𝑎 𝜌 𝑟 𝜌 𝑟 𝜌
𝑟 + 𝑟

2
𝛿 𝑟 − 𝑟 𝑑𝑟 𝑑𝑟

𝑉 = 𝑎 𝜌 𝑟 𝜌 𝑟 𝛿 𝑟 − 𝑟 𝑑𝑟 𝑑𝑟

𝑉 = 2𝑎𝜌 𝑥 𝜑 𝑥 + 3𝑏 𝜌 𝑥 𝜑 𝑥

Ignoring the Fock term, the Hamiltonian is then written 
using the potential obtained previously

The Hartree equation is written as

−
ℏ

2𝑚
+ 2𝑎𝜌 𝑥 + 3𝑏 𝜌 𝑥 𝜑 𝑥 = 𝑒 𝜑 𝑥



The Hartree-Fock equation: non-linearity

−
ℏ

2𝑚
∇ + 𝜌 𝑦 𝑣 𝑥, 𝑦 𝑑𝑦 𝜑 𝑥 − 𝜌 𝑥, 𝑦 𝑣 𝑥, 𝑦 𝜑 𝑦 𝑑𝑦 = 𝑒 𝜑 𝑥

Solutions

EigenvalueEigenfunction

𝜌 𝑦 = 𝜑∗ 𝑦 𝜑 𝑦Input



Steps to solving the Hartree-Fock equation

Guess an initial set of single-
particle wave functions 𝜑 𝑥

Construct density 𝜌 𝑦 = ∑ 𝜑∗ 𝑦 𝜑 𝑦
and therefore the potential

Solve the eigenvalue equation

−
ℏ

2𝑚
+ 𝑢 𝑥 𝜑 𝑥 = 𝑒 𝜑 𝑥

New s.p.
states the 
same as 
before?

START

END
Yes

No



Part 3: 
Including pairing correlations



Why pairing is important?
Mass parabola showing the effect of pairing correlations

[taken from Introductory Nuclear Physics by Kenneth Krane]

Most stable nucleus for 
the A = 125 chain

Odd-odd nuclei chain are less 
stable (less binding) as 
compared to even-even nuclei.

Nuclei with even numbers 
of protons and neutrons
 Extra stability

Pairing is important for 
non closed-shell nuclei



How to include pairing into the Hartree-Fock framework?
Starting from the many-body Hamiltonian

𝐻 = �̂� + 𝑉 𝑟 , 𝑟

,

We introduce an average (mean) potential such that

𝐻 = �̂� + 𝑈 + 𝑉 𝑟 , 𝑟 − 𝑈

,

Residual 
interaction

Initially assumed 
to be zero

= ℎ

Is the one-body 
Hamiltonian

Pairing 
correlations

Within the HF framework, pairing correlations are treated 
using the BCS approach

Proposed by Bardeen, Cooper, Schrieffer 
to explain superconductivity in metals

Assumptions:
Condensation of two fermions (called as Cooper pairs) 
into boson-like state.

Attraction between the Cooper pairs is strong enough to 
overcome Coulomb repulsion between similar charges.

Note:
HF+BCS as an approximation to Hartree-Fock-Bogoliubov
approach. Found to be equivalent for nuclei near the line 
of stability.



The BCS wave function

BCS wave function for ground-state of an even-even nucleus is written:

|BCS⟩ = 𝑢 + 𝑣   𝑎   𝑎 |0⟩

Probability for the 
single-particle state 

𝑘 to be empty.

Probability for the 
single-particle state 

𝑘 to be filled.

Creation operator
 Creating 1 particle 

in s.p state 𝑘.

Creation operator
 Remove 1 particle in 

conjugate state 𝑘

The z-component of 
angular momentum

𝐽 |𝜑 ⟩ = Ω |𝜑 ⟩

A vacuum state 
with no nucleons

𝑒

𝑒

𝑒

𝑒 = 𝑒

Simple illustration of BCS 
wave function

(g.s even-even nucleus)

Ω > 0

Normalization of the BCS wave function yields

BCS BCS = 𝑢 + 𝑣

With 𝑢 + 𝑣 = 1



The BCS Hamiltonian & particle number uncertainty

The Hamiltonian to be solved has the form of
𝐻 = 𝐻 − 𝜆𝑁

Such that

𝐻 = 𝑒 − 𝜆 𝑎 𝑎 + 𝑘𝑘 𝑣 𝑘 𝑘 𝑎 𝑎 𝑎 𝑎

,

A term to constraint the number of 
particles (nucleons) to a desired value.

𝜆 is a Lagrange multiplier 
whose function is that of a 
chemical energy.

The particle number operator is defined as

𝑁 = 𝑎 𝑎

Expectation value of particle number with 
respect to BCS wave function is

BCS 𝑁 BCS = 2 𝑣

Annihilation 
operator

Residual pairing interaction 
term acting on nucleon pairs

Choice of residual interaction
• Density dependent delta
• Gaussian
• Separable pairing
• Seniority force

Weakness of BCS approach:
Number of particle is not 
conserved!

The uncertainty in the particle number is

Δ𝑁 = BCS 𝑁 BCS − BCS 𝑁 BCS

= 4 𝑢 𝑣



Consequence of BCS pairing on calculations

Guess an initial set of single-
particle wave functions 𝜑 𝑥

Construct density 
𝜌 𝑦 = ∑ 𝑣 𝜑∗ 𝑦 𝜑 𝑦
and therefore the potential

Solve the eigenvalue equation

−
ℏ

2𝑚
+ 𝑢 𝑥 𝜑 𝑥 = 𝑒 𝜑 𝑥

New s.p.
states the 
same as 
before?

START

END

Solve BCS equation 
yielding 𝑣 and 𝑢

Yes

NoOutput from BCS calculations:



Part 4:
Phenomenological nucleon-
nucleon interaction



Properties of nucleon-nucleon interaction
re

pu
ls

iv
e

at
tr

ac
tiv

e

0 1 2 3 Nucleon 
separation 

[fm]

Force [10 N] When the nucleon 
gets too near, they 
repulse one another.

Optimal distance 
between two nucleons

Nuclear force is attractive when nucleons are 
further from their optimal separation distance.

But at short distance, nuclear force 
is stronger than Coulomb allowing 
it to bind protons together.

Dependence on inter-nucleon distance



Properties of nucleon-nucleon interaction
Dependence on spin orientation

We begin by identifying the eigenvalue of the spin operator as
𝑆 = S 𝑆 + 1 ℏ

where 𝑆 is the total spin of neutron and proton i.e.
𝑆 = 𝑆 + 𝑆

NB: In this case, the lowest single-particle state has orbital angular 
momentum 𝑙 = 0.

Inserting the equation into the first one, 
we obtained

𝑆 = 𝑆 + 𝑆 = 𝑆 + 𝑆 + 2𝑆 ⋅ 𝑆

𝑆 ⋅ 𝑆 =
1

2
𝑆 − 𝑆 − 𝑆

𝑆 ⋅ 𝑆 =
ℏ

2
𝑆 𝑆 + 1 −

3

2

𝑆 ⋅ 𝑆 =

+
ℏ

4
  ;   Triplet state

−
3ℏ

4
   ; Singlet state

Attractive force

Spin, S = 1 channel
(Triplet state)

Spin, S = 0 channel
(Singlet state)



Properties of nucleon-nucleon interaction
Dependence on tensor component

Diagram taken from H. Sagawa and G. Colo [arXiv:1401.6691v2]

When the orientation of the spins are 
aligned with the relative distance of 
the proton and neutron.



Properties of nucleon-nucleon interaction
Dependence on spin-orbit coupling

Recall that the total angular momentum 

𝑗 =
𝑙 + 1

2

𝑙 − 1
2

and with 𝑠 = 1/2, we have after substituting 𝑗 into 
the equation

𝑙 �̂� =

     
ℏ

2
𝑙           ; for 𝑗 = 𝑙 + 1

2

−
ℏ

2
𝑙 + 1 ; for 𝑗 = 𝑙 − 1

2

Attractive when spin and orbital 
angular momentum are aligned.
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The expectation value for the spin-orbit coupling is given by:

𝑙 �̂� =
ℏ

2
𝑗 𝑗 + 1 − 𝑙 𝑙 + 1 − 𝑠 𝑠 + 1

Magic numbers were explained after 
introducing spin-orbit term



Choices of effective interaction

Skyrme’s
(zero range) 
interaction

HF calculation of 208Pb
Vautherin & Veneroni
Phys. Lett. B 29, 203

HF calculation with 
Skyrme’s interaction 
for spherical nuclei
Vautherin & Brink

PRC 5, 626

HF+BCS for 
deformed nuclei

Vautherin
PRC 7, 296

Gogny’s
(finite range) 
interaction

Relativistic mean-
field model

Walecka, Ann. 
Phys. 83, 491 

(1974)

Relativistic mean-field 
model

Boguta & Bodmer, 
Nucl. Phys. A 292, 413 

(1977)

1956

1969

1972 1973 1974 1977



Choices of effective interaction: Gogny interaction

Finite range term

Density dependent, 
zero range term

Spin-orbit zero range 
term

Spin-exchange operator

Parameters fitted to 
experimental data



Choices of effective interaction: Skyrme interaction

The Skyrme interaction can be written as

Central term

Density dependent term

Spin-orbit term

The Skyrme parameters are 𝑡 , 𝑥 and 𝑊 with 
𝑖 = 1,2,3 are obtained from fit to some 
nuclear properties.

Momentum operator



Part 5:
Skyrme’s energy density 
functional



Skryme energy-density functional
The expectation value of the many-body Hamiltonian operator for a wave function written as a normalized 
Slater determinant is

They are written as Hamiltonian densities with contributions from

Kinetic energy

Density 
dependent

Spin-orbit

Central

Coulomb



Skryme energy-density functional – coupling constants

The coupling constants 𝐵 with 𝑗 = 1,19 are written in terms of the Skyrme parameters 𝑡 , 𝑥 and 𝑊 .



Skryme energy-density functional – local densities

Kinetic energy

Spin-orbit Particle density

Kinetic energy density

Spin current density

Time-even local densities



Skryme energy-density functional – local densities

Spin-orbit

Time-odd local densities
 Do not contribute for ground-state of even-even nucleus

Central

Spin density

Current density

Spin kinetic density



Application of variational principle to obtain HF equations

The Hartree-Fock equations to be solved iteratively are obtained by varying the total energy with respect to 𝜙

Time-odd 
potentials

The HF equations in coordinate space given below are written in terms of local densities and Skyrme’s coupling 
constants.

Vanishes when time-reversal 
symmetry is preserved.



Breaking of time-reversal symmetry at the mean-field level

𝑒

Even-even nucleus
Ground state

𝐾 = 0

𝑒

Even-even nucleus
Ground state

𝐾 = Ω

Single-particle state 
labelled using Ω and 

parity 𝜋 quantum 
numbers among others.

𝜙 𝚥̂ 𝜙 = Ω

Projection of the single-
particle total angular 

momentum operator on 
symmetry z-axis

Assumption:
The total angular 
momentum of the whole 
nucleus is given by the 
unpaired nucleon.

Adding an unpaired 
nucleon causes core 

polarization – breaking of 
time-reversal symmetry

BCS calculations
Find the maximum overlap 
between one s.p. state with 
its time reversed conjugate

𝜙 , 𝑇 𝜙 ,

|𝜙 ,

|𝜙 ,

Time-reversal 
symmetry broken



Part 6:
Expansion of s.p. wave functions



Expanding on deformed harmonic oscillator basis states

HF equation to be solved:

ℎ |𝑘⟩ = 𝑒 |𝑘⟩

ℎ 𝜙 𝒓, 𝜎, 𝑞 = 𝑒 𝜙 𝒓, 𝜎, 𝑞

Cartesian coordinate

Deformed harmonic oscillator
𝛼 ≡ 𝑛 , 𝑛 , 𝑙 , 𝑠

𝑟 = 𝑟, 𝑧, 𝜑 (cylindrical coord.)

The wave function can be expanded on 
any orthonormal basis states for e.g.

Recap: 
1-dimensional SE with harmonic oscillator potential

Eigenvalue:

Eigenfunction:

Hermite polynomial

Recap: 
Radial equation of hydrogen atom

Eigenvalue:

Eigenfunction:

Associated Laguerre 
polynomial



Expanding on deformed harmonic oscillator basis states

When expanding the s.p. wave function on 
deformed harmonic oscillator, it is written as

Hermite polynomial
Assoc. Laguerre 

polynomial

A truncation in the expansion is made using

Two parameters to be optimized namely

with 𝜔 = 𝜔 𝜔 for a given basis size 𝑁 .



Part 7:
Examples of HF+BCS calculations



Global microscopic calculations of ground-state spins and parities for odd-mass nuclei
L. Bonneau, P. Quentin and P. Moller, Phys. Rev. C 76, 024320 (2007)

“…the overall agreement is similar for the SIII and SLy4 Skyrme forces and about 5% less 
good for the SkM force.”



Large-scale self-consistent nuclear mass calculations
M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz and P. Borycki, Int. J. Mass Spectrom. 251 (2006)



Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass 
heavy nuclei within a microscopic approach
M.-H. Koh, D.D. Duc, T.V. Nhan Hao, H.T. Long, P. Quentin and L. Bonneau, Eur. Phys. J A 52 (2016)



Part 8:
Constrained Hartree-Fock



Constraining to a desired nuclear shape

Unconstrained HF calculation yields solution at the local 
extrema (minima). A constraint is added to study nuclear 
properties at a certain deformation.

Multipole moments

Axial & parity symmetric shapes

Quadrupole moment

Hexadecapole moment

Parity asymmetric shapes

Octupole moment

Axially asymmetric shapes

Non-axial quadrupole moment



Ways to constraint nuclear deformation

From H. Flocard, P. Quentin, A.K. Kerman and D. 
Vautherin, Nucl. Phys. A 203, 433 (1973)

Linear constraint
𝑓 𝜇 , 𝑄 = −𝜇 𝑄

Search for a point in which the slope is equal to 𝜇.

Quadratic constraint

Calculations with no constraint

𝑓 𝜇 , 𝑄 = 0

yields solution at the local extrema.



Part 9:
Application of HF+BCS to large 
nuclear deformation



Overview of nuclear theory studies

N. Schunck & L.M. Robledo
Microscopic theory of nuclear fission: a review

Rep. Prog. Phys. 79, 116301 (2016)



Calculations of deformation energies

Deformation energy of odd-mass 239Pu
M.-H. Koh, L. Bonneau, P. Quentin, T.V. Nhan Hao 
and H. Wagiran, Phys. Rev. C 95, 014315 (2017)

Inner barrier 𝑉

Outer barrier 𝑉

N. Schunck, D. Duke, H. Carr, and A. Knoll, 
Phys. Rev. C 90, 054305 (2014)

Parity asymmetry
Parity symmetry



Fission cross-section modelling

Fission cross-section modelling

Deformation energy:
Total binding energy as a 
function of nuclear shape

Stationary states in the potential well 
& top of fission barriers

Input parameters 
obtained from nuclear 

structure info 

Transmission 
coefficient(s) 

across the barriers

Barrier penetrability 
within Hill-Wheeler 

approach


