Mean-field approach to fission and fission cross-section modelling

Universiti Kebangsaan Malaysia - University of Bordeaux
Winter School on Nuclear Science and Technology
$26^{\text {th }}-28^{\text {th }}$ November 2018

Part 1:
 Going back to quantum mechanics

- Identical particle and many-body problem
- Approximations for stationary states - variational method

The many-body problem

The wave function

The wave-function for N-body system $\rightarrow \Psi\left(r_{1}, r_{2}, r_{3} \ldots r_{N}, t\right)$.
$\left|\Psi\left(r_{1}, r_{2}, r_{3} \ldots r_{N}, t\right)\right|^{2} d^{3} r_{1} d^{3} r_{2} d^{3} r_{3} \ldots d^{3} r_{N}$
$>$ gives the probability of finding particles \#1 within volume element $d^{3} r_{1}$ centered around r_{1} etc.
The normalization condition for the wave function $\int d^{3} r_{1} \int d^{3} r_{2} \cdots \int\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)\right|^{2} d^{3} r_{N}=1$.

The Hamiltonian

We can generalize the one-body 3D Schrodinger equation into N body case such that
$\hat{H}=\sum_{j=1}^{N} \frac{\hat{P}_{j}^{2}}{2 m_{j}}+\hat{V}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)=-\sum_{j=1}^{N} \frac{\hbar^{2}}{2 m_{j}} \nabla_{j}^{2}+\hat{V}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)$

Commutation relations

Operators acting on different particles commute, for e.g.

$$
\begin{array}{r}
{\left[\hat{X}_{j}, \hat{P}_{x_{k}}\right]=i \hbar \delta_{j, k}} \\
{\left[\hat{P}_{x_{j}}, \hat{P}_{x_{k}}\right]=0} \\
{\left[\hat{X}_{j}, \hat{X}_{k}\right]=0} \\
\text { for } j, k=1,2,3 \ldots N
\end{array}
$$

The many-body problem - stationary states

The solution for a time-independent case
When the potential does not dependent on time $\widehat{V}(r, t) \rightarrow \widehat{V}(r)$, the general Schrodinger equation

$$
i \hbar \frac{\partial}{\partial t} \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)=\hat{H} \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)
$$

Is written as

$$
\left[-\sum_{j=1}^{N} \frac{\hbar^{2}}{2 m_{j}} \vec{\nabla}_{j}^{2}+V\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)=E \psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)
$$

With the wave function now given by

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)=\psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right) e^{-i E t / h}
$$

The many-body problem - permutation operator

Interchange symmetry

Let us denote ξ_{i} to represent coordinates of the particles (position, spin and other internal degrees of freedom).

We define an operator $\hat{P}_{i j}$ acting to interchange the $i_{t h}$ and $j_{t h}$ particle such that

$$
\hat{P}_{i j} \psi\left(\xi_{1}, \ldots \xi_{i}, \ldots \xi_{j}, \ldots \xi_{N}\right)=\psi\left(\xi_{1}, \ldots \xi_{j}, \ldots \xi_{i,} \ldots \xi_{N}\right)
$$

Applying two successive operations of $\hat{P}_{i j}$ on the wave function, we have $\hat{P}_{i j}^{2} \psi\left(\xi_{1}, \ldots \xi_{i}, \ldots \xi_{j}, \ldots \xi_{N}\right)=\hat{P}_{i j} \psi\left(\xi_{1}, \ldots \xi_{j}, \ldots \xi_{i}, \ldots \xi_{N}\right)=\psi\left(\xi_{1}, \ldots \xi_{i}, . \xi_{j}, \ldots \xi_{N}\right)$ Therefore $\hat{P}_{i j}^{2}=1$ and $\hat{P}_{i j}= \pm 1$
i.e.

$$
\hat{P}_{i j} \psi\left(\xi_{1}, \ldots \xi_{i}, \ldots \xi_{j}, \ldots \xi_{N}\right)= \pm \psi\left(\xi_{1}, \ldots \xi_{i}, \ldots \xi_{j}, \ldots \xi_{N}\right)
$$

The many-body problem - System of indistinguishable particles

 Unlike macroscopic objects, identical particles cannot be distinguished. Why?Physicists are only able to specify a complete set of commuting observables to identify a particle. Nothing more!

The probability must remain the same with interchange of particles.

$$
\left|\psi\left(\xi_{1}, \ldots \xi_{i}, \ldots \xi_{j}, \ldots \xi_{N}\right)\right|^{2}=\left|\psi\left(\xi_{1}, \ldots \xi_{j}, \ldots \xi_{i}, \ldots \xi_{N}\right)\right|^{2}
$$

The uncertainty principle limits the exact information on the location of the particle.

Consequence:

Symmetrization postulate says that system with N number of particles is either totally symmetric or antisymmetric under interchange of particles.

The symmetric w.f. for two-particle system is

$$
\psi_{s}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right)+\psi_{n_{1}}\left(\xi_{2}\right) \psi_{n_{2}}\left(\xi_{1}\right)\right]
$$

While the antisymmetric part is

$$
\psi_{a}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right)-\psi_{n_{1}}\left(\xi_{2}\right) \psi_{n_{2}}\left(\xi_{1}\right)\right]
$$

The many-body problem - System of identical non-interacting particles

For a system where all particles have equal mass and experience the same potential i.e. $\widehat{V}_{i}\left(\xi_{i}\right)=\hat{V}\left(\xi_{i}\right)$, the Schrodinger equation for the whole system can be reduced into \boldsymbol{N} identical one-particle equations:

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}+\widehat{V}\left(\xi_{i}\right)\right] \psi_{n_{i}}\left(\xi_{i}\right)=\varepsilon_{n_{i}} \psi_{n_{i}}\left(\xi_{i}\right)
$$

With the total energy of the system given by a sum of the single-particle energies $\varepsilon_{n_{i}} ; E=\sum_{i}^{N} \varepsilon_{n_{i}}$

How about the total wave function?
Can we write it as:

$$
\psi_{n_{1}, n_{2}, \ldots, n_{N}}\left(\xi_{1}, \ldots \xi_{i}, \ldots \xi_{j}, \ldots \xi_{N}\right)=\prod_{i=1}^{N} \psi_{n_{i}}\left(\xi_{i}\right)
$$

No for two reasons

If the wave function is valid, it means that one can identify particle \#1 at ξ_{1}, \#2 at ξ_{2} etc.

But there is no way to distinguish identical microscopic particles.

The wave function do not have definite parity. For identical particles, the wave function must either be symmetric or antisymmetric.

The many-body problem - System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions
The symmetric wave function is written as:

$$
\begin{aligned}
\psi_{s}\left(\xi_{1}, \xi_{2}\right) & =\frac{1}{\sqrt{2}}\left[\psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right)+\psi_{n_{1}}\left(\xi_{2}\right) \psi_{n_{2}}\left(\xi_{1}\right)\right] \\
& =\frac{1}{\sqrt{2!}} \sum_{P} \hat{P} \psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right)
\end{aligned}
$$

while the antisymmetric wave function is:

$$
\begin{aligned}
\psi_{a}\left(\xi_{1}, \xi_{2}\right) & =\frac{1}{\sqrt{2}}\left[\psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right)-\psi_{n_{1}}\left(\xi_{2}\right) \psi_{n_{2}}\left(\xi_{1}\right)\right] \\
& =\frac{1}{\sqrt{2!}}\left|\begin{array}{ll}
\psi_{n_{1}}\left(\xi_{1}\right) & \psi_{n_{1}}\left(\xi_{2}\right) \\
\psi_{n_{2}}\left(\xi_{1}\right) & \psi_{n_{2}}\left(\xi_{2}\right)
\end{array}\right| \\
& =\frac{1}{\sqrt{2!}} \sum_{P}(-1)^{P} \hat{P} \psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right)
\end{aligned}
$$

The many-body problem - System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions
The symmetric wave function is written as:

$$
\begin{aligned}
& \psi_{s}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\frac{1}{\sqrt{3!}}[\psi n_{1}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right) \psi_{n_{3}}\left(\xi_{3}\right)+\psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{3}\right) \psi_{n_{3}}\left(\xi_{2}\right) \\
&+\psi_{n_{1}}\left(\xi_{2}\right) \psi_{n_{2}}\left(\xi_{1}\right) \psi_{n_{3}}\left(\xi_{3}\right)+\psi_{n_{1}}\left(\xi_{2}\right) \psi_{n_{2}}\left(\xi_{3}\right) \psi_{n_{3}}\left(\xi_{1}\right) \\
&\left.+\psi_{n_{1}}\left(\xi_{3}\right) \psi_{n_{2}}\left(\xi_{1}\right) \psi_{n_{3}}\left(\xi_{2}\right)+\psi_{n_{1}}\left(\xi_{3}\right) \psi_{n_{2}}\left(\xi_{2}\right) \psi_{n_{3}}\left(\xi_{1}\right)\right] \\
&=\frac{1}{\sqrt{3!}} \sum_{P} \hat{P} \psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right) \psi_{n_{3}}\left(\xi_{3}\right)
\end{aligned}
$$

while antisymmetric wave function is:

$$
\begin{aligned}
\psi_{a}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =\frac{1}{\sqrt{3!}} \sum_{P}(-1)^{P} \hat{P} \psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right) \psi_{n_{3}}\left(\xi_{3}\right) \\
& =\frac{1}{\sqrt{3!}}\left|\begin{array}{lll}
\psi_{n_{1}}\left(\xi_{1}\right) & \psi_{n_{1}}\left(\xi_{2}\right) & \psi_{n_{1}}\left(\xi_{3}\right) \\
\psi_{n_{2}}\left(\xi_{1}\right) & \psi_{n_{2}}\left(\breve{\xi}_{2}\right) & \psi_{n_{2}}\left(\xi_{3}\right) \\
\psi_{n_{3}}\left(\xi_{1}\right) & \psi_{n_{3}}\left(\xi_{2}\right) & \psi_{n_{3}}\left(\xi_{3}\right)
\end{array}\right|
\end{aligned}
$$

The many-body problem - System of identical non-interacting particles

Constructing the total wave function using single-particle wave functions

The symmetric wave function is written as:

$$
\psi_{s}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)=\frac{1}{\sqrt{N!}} \sum_{P} \hat{P} \psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right) \cdots \psi_{n_{N}}\left(\xi_{N}\right)
$$

Generalizing to manyparticle system
while antisymmetric wave function is:

$$
\begin{aligned}
& \psi_{a}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)=\frac{1}{\sqrt{N!}} \sum_{P}(-1)^{P} \psi_{n_{1}}\left(\xi_{1}\right) \psi_{n_{2}}\left(\xi_{2}\right) \cdots \psi_{n_{N}}\left(\xi_{N}\right) \\
& \psi_{a}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\psi_{n_{1}}\left(\xi_{1}\right) & \psi_{n_{1}}\left(\xi_{2}\right) & \cdots & \psi_{n_{1}}\left(\xi_{N}\right) \\
\psi_{n_{2}}\left(\xi_{1}\right) & \psi_{n_{2}}\left(\xi_{2}\right) & \cdots & \psi_{n_{2}}\left(\xi_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{n_{N}}\left(\xi_{1}\right) & \psi_{n_{N}}\left(\xi_{2}\right) & \cdots & \psi_{n_{N}}\left(\xi_{N}\right)
\end{array}\right|
\end{aligned}
$$

The $N \times N$ determinant is known as Slater determinant

Pauli exclusion principle

$>$ If $n_{1}=n_{2}, \psi_{a}=0$.
\rightarrow No two particles can occupy simultaneously the same quantum state of the same fermionic system.

The many-body problem - System of identical non-interacting particles

Symmetric and antisymmetric components of the spatial and spin wave functions

The total wave function involves both spatial and spin part and can be written as:

For bosons, total wave function must be symmetric.

$$
\Psi_{\text {boson }}=\left\{\begin{array}{l}
\psi_{s}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right) \chi_{s}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right) \\
\psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right) \chi_{a}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right)
\end{array}\right.
$$

For fermions, total wave function must be antisymmetric.

$$
\Psi_{\text {boson }}=\left\{\begin{array}{l}
\psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right) \chi_{s}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right) \\
\psi_{s}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right) \chi_{a}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{N}\right)
\end{array}\right.
$$

Part 1:

Going back to quantum mechanics

- Identical particle and many-body problem
- Approximations for stationary states - variational method

Approximations to stationary states - time-independent case


```
To obtain eigenvalue 阷利
eigenfunction }|\mp@subsup{\psi}{n}{}\rangle\mathrm{ to time-independent
Hamiltonian without exact solution
\[
\widehat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle
\]
```


Approximations to stationary states - Variational method

Variational equation

$$
\begin{aligned}
& \text { Instead of solving the eigenvalue equation } \widehat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \\
& \text { directly, the aim is to solve variational equation } \\
& \qquad \delta E[\psi]=0 \\
& \text { with }
\end{aligned}
$$

$$
E[\psi]=\frac{\langle\psi| \widehat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

If $|\psi\rangle$ depends on parameter α, then E also depends on α.

Aim: Vary α to minimize E.

Solving the variational equation;

$$
\delta E[\psi]=\delta \frac{\langle\psi| \widehat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \Rightarrow \delta E[\psi]=\delta\langle\psi| \widehat{H}|\psi\rangle=0
$$

We then have

$$
\delta\langle\psi| \widehat{H}|\psi\rangle=\langle\delta \psi| \widehat{H}|\psi\rangle+\langle\psi| \widehat{H}|\delta \psi\rangle=0
$$

i.e. varying $\langle\delta \psi| \widehat{H}|\psi\rangle$ is equivalent to varying its complex conjugate term.

Approximate solution is always higher or equal to the exact solution E_{0}
Expand the wave function $|\Psi\rangle$ as $|\psi\rangle=\sum_{n} a_{n}\left|\psi_{n}\right\rangle$ with $\widehat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle$

The quantity $E[\psi]$ is then

$$
E[\psi]=\frac{\sum_{n} E_{n}\left|a_{n}\right|^{2}}{\sum_{n}\left|a_{n}\right|^{2}} \geq \frac{E_{0} \sum_{n}\left|a_{n}\right|^{2}}{\sum_{n}\left|a_{n}\right|^{2}}=E_{0}
$$

Approximations to stationary states - Variational method

Guess the form of initial wavefunction Note:
> takes into account all physical properties e.g. symmetries, number of nodes etc.
$>$ adjustable parameters (e.g.
$\alpha_{1}, \alpha_{2}, \ldots$) to represent information that we are not sure off.

4
Insert values of $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ to obtain approximate value of energy

2 Write the mathematical expression for total energy depending on the various parameters.

$$
E\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\frac{\left\langle\psi\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right| \widehat{H}\left|\psi\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\rangle}{\left\langle\psi\left(\alpha_{1}, \alpha_{2}, \ldots\right) \mid \psi\left(\alpha_{1}, \alpha_{2}, \ldots\right)\right\rangle}
$$

3 Search for the minimum energy by minimizing E with respect to parameters α_{i}

$$
\frac{\partial E\left(\alpha_{1}, \alpha_{2}, \ldots\right)}{\partial \alpha_{i}}=0
$$

To obtain values of $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ that yield minimum E.

Part 2: Hartree-Fock approach

The Hartree-Fock approach and approximations

Starting from the many-body Hamiltonian operator

Assumption:

The wave function of the system can be approximated by a Slater determinant
$>$ single-particle (s.p) wave function with s.p. energy e_{i} obtain after solving the HF equation.

$$
\psi\left(r_{1}, r_{2}, \ldots r_{N}\right)=\frac{1}{\sqrt{N!}}\left|\left[\begin{array}{ccc}
\varphi_{1}\left(r_{1}\right) & \cdots & \varphi_{1}\left(r_{N}\right) \\
\vdots & \ddots & \vdots \\
\varphi_{N}\left(r_{1}\right) & \cdots & \varphi_{N}\left(r_{N}\right)
\end{array}\right]\right|
$$

The expectation value of the Hamiltonian with respect to the Slater determinant is

$$
\begin{aligned}
&\langle\psi| \widehat{H}|\psi\rangle=\sum_{i=1}^{N}\langle i| \hat{t}_{i}|i\rangle+\frac{1}{2} \sum_{i, j=1}^{N}\langle i j| \widehat{V}\{|i j\rangle-|j i\rangle\} \\
&=\sum_{i=1}^{N} \int \varphi_{i}^{*}(r)\left(-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}\right) \varphi_{i}(r) d r+\frac{1}{2} \sum_{i, j=1}^{N} \int \varphi_{i}^{*}(r) \varphi_{j}^{*}\left(r^{\prime}\right) \hat{v}\left(r, r^{\prime}\right) \varphi_{i}(r) \varphi_{j}\left(r^{\prime}\right) \\
& \quad-\frac{1}{2} \sum_{i, j=1}^{N} \int \varphi_{i}^{*}(r) \varphi_{j}^{*}\left(r^{\prime}\right) \hat{v}\left(r, r^{\prime}, \varphi_{j}\right) r^{2}\left(\varphi_{i}\left(r^{\prime}\right)\right.
\end{aligned}
$$

The Hartree-Fock approach and approximations

Varying the expectation value of the Hamiltonian operator with respect to all single-particle wave functions

$$
\frac{\delta}{\delta \varphi_{i}^{*}(x)}\left[\langle\varphi| \widehat{H}|\varphi\rangle-\sum_{i=1}^{N} \varepsilon_{i} \int \varphi^{*}(y) \varphi(y) d r\right]=0
$$ one single-particle wave function with respect to another

We have
$\frac{\delta \varphi_{i}^{*}(y)}{\delta \varphi_{j}^{*}(x)}$
$=\delta_{i b} \delta(x-y)$
$-\frac{1}{2} \sum_{i, j=1}^{N} \iint \varphi_{i}^{*}(y) \varphi_{j}^{*}\left(y^{\prime}\right) \hat{v}\left(y, y^{\prime} \varphi_{j}(y) \varphi_{i}\left(y^{\prime}\right) d y d y^{\prime}-\sum_{i=1}^{N} e_{i} \int \varphi_{i}^{*}(y) \varphi_{i}(y) d r\right\}=0$
$\hat{t}(x) \varphi_{i}(x)+\frac{1}{2} \sum_{j=1}^{N} \int \varphi_{j}^{*}\left(y^{\prime}\right) \hat{v}\left(x, y^{\prime}\right) \varphi_{b}(x) \varphi_{j}\left(y^{\prime}\right) d y^{\prime}+\frac{1}{2} \sum_{i=1}^{N} \int \varphi_{i}^{*}(y) \hat{v}(y, x) \varphi_{i}(y) \varphi_{b}(x) d y$
$-\frac{1}{2} \sum_{j=1}^{N} \int \varphi_{j}^{*}\left(y^{\prime}\right) \hat{v}\left(x, y^{\prime}\right) \varphi_{j}(x) \varphi_{b}\left(y^{\prime}\right) d y^{\prime}-\frac{1}{2} \sum_{i=1}^{N} \int \varphi_{i}^{*}(y) \hat{v}(y, x) \varphi_{b}(y) \varphi_{i}(x) d y-e_{b} \varphi_{b}(x)=0$

The Hartree-Fock approach and approximations

The Hartree-Fock approach and approximations

Applying the same steps to the other terms, we have the Hartree-Fock equations written as:

$$
\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+\sum_{i=1}^{N} \int \varphi_{i}^{*}(y) \hat{p}(x, y) \varphi_{j}(y) d y\right\} \varphi_{b}(x)-\sum_{i=1}^{N} \int \varphi_{i}^{*}(x) \hat{v}\left(x, y \varphi_{i}(y) \varphi_{b}(y) d y=e_{b} \varphi_{b}(x)\right.
$$

Shorthand notation for one-

 body density matrix$$
\begin{aligned}
\rho(y) & =\sum_{i=1}^{N} \varphi_{i}^{*}(y) \varphi_{i}(y) \\
\rho(x, y) & =\sum_{i=1}^{N} \varphi_{i}^{*}(x) \varphi_{i}(y)
\end{aligned}
$$

SUMMARY:

Reduction from many-body to one-body problem.

Hartree term
Fock term

Example: Case of density-dependent interaction

Assuming that the potential is written as:

$$
\hat{V}\left(r_{1}, r_{2}\right)=a \delta\left(r_{1}-r_{2}\right)+b \rho\left(\frac{r_{1}+r_{2}}{2}\right) \delta\left(r_{1}-r_{2}\right)
$$

With a and b as parameters to be adjusted.
The expectation value of the potential operator is

$$
\langle\hat{V}\rangle=a \iint \rho\left(r_{1}\right) \rho\left(r_{2}\right) \delta\left(r_{1}-r_{2}\right) d r_{1} d r_{2}
$$

$$
+b a \iint \rho\left(r_{1}\right) \rho\left(r_{2}\right) \rho\left(\frac{r_{1}+r_{2}}{2}\right) \delta\left(r_{1}-r_{2}\right) d r_{1} d r_{2}
$$

$$
=a \int \rho^{2}(r) d r+b \int \rho^{3}(r) d r
$$

The variation of the expectation value of the potential is then

$$
\begin{aligned}
\langle\widehat{V}\rangle & =2 a \int \rho(r) \varphi_{b}(r) \delta(r-x) d r+3 b \int \rho^{2}(r) \varphi_{b}(r) \delta(r-x) d r \\
& =2 a \rho(x) \varphi_{b}(x)+3 b \rho^{2}(x) \varphi_{b}(x)
\end{aligned}
$$

Ignoring the Fock term, the Hamiltonian is then written using the potential obtained previously

$$
\langle\hat{V}\rangle=2 a \rho(x) \varphi_{b}(x)+3 b \rho^{2}(x) \varphi_{b}(x)
$$

The Hartree equation is written as

$$
\left(-\frac{\hbar^{2}}{2 m}+\left[2 a \rho(x)+3 b \rho^{2}(x)\right]\right) \varphi_{b}(x)=e_{b} \varphi_{b}(x)
$$

The Hartree-Fock equation: non-linearity

Steps to solving the Hartree-Fock equation

Part 3:
Including pairing correlations

Why pairing is important?

Mass parabola showing the effect of pairing correlations
Pairing is important for non closed-shell nuclei

How to include pairing into the Hartree-Fock framework?

Starting from the many-body Hamiltonian

$$
\widehat{H}=\sum_{i}^{N} \hat{t}_{i}+\sum_{i, j=1}^{N} \widehat{V}\left(r_{i}, r_{j}\right)
$$

We introduce an average (mean) potential such that

$$
\widehat{H}=\sum_{i}^{N}\left(\hat{t}_{i}+\widehat{U}_{i}\right)+\sum_{i, j=1}^{N}\left(\widehat{V}\left(r_{i}, r_{j}\right)-\widehat{U}_{i}\right)
$$

$$
=\sum_{i}^{N} \hat{h}_{s p_{i}}
$$

Is the one-body Hamiltonian

Pairing correlations

Within the HF framework, pairing correlations are treated using the BCS approach

Proposed by Bardeen, Cooper, Schrieffer to explain superconductivity in metals

Assumptions:

Condensation of two fermions (called as Cooper pairs) into boson-like state.

Attraction between the Cooper pairs is strong enough to overcome Coulomb repulsion between similar charges.

Note:

HF+BCS as an approximation to Hartree-Fock-Bogoliubov approach. Found to be equivalent for nuclei near the line of stability.

The BCS wave function

BCS wave function for ground-state of an even-even nucleus is written:

$$
|\mathrm{BCS}\rangle=\prod^{u_{k}+v_{k}} a_{k}^{+} a_{k}^{+}|0\rangle \quad \begin{aligned}
& \text { A vacuum state } \\
& \text { with no nucleons }
\end{aligned}
$$

The z-component of angular momentum $\hat{J}_{z}\left|\varphi_{k}\right\rangle=\Omega_{k}\left|\varphi_{k}\right\rangle$
Probability for the single-particle state k to be empty.

Creation operator

$>$ Remove 1 particle in conjugate state \bar{k}

Simple illustration of BCS
wave function
(g.s even-even nucleus)

Creation operator

$>$ Creating 1 particle in s.p state k.

Normalization of the BCS wave function yields

$$
\langle\mathrm{BCS} \mid \mathrm{BCS}\rangle=\prod_{\Omega_{k}>0}\left(u_{k}^{2}+v_{k}^{2}\right)
$$

With $u_{k}^{2}+v_{k}^{2}=1$

The BCS Hamiltonian \& particle number uncertainty

Consequence of BCS pairing on calculations

Output from BCS calculations:

$v_{k}^{2}=\frac{1}{2}\left\{1-\frac{e_{k}^{\prime}-\lambda}{\left[\left(e_{k}^{\prime}-\lambda\right)^{2}+\Delta^{2}\right]^{1 / 2}}\right\}$
$u_{k}^{2}=\frac{1}{2}\left\{1+\frac{e_{k}^{\prime}-\lambda}{\left[\left(e_{k}^{\prime}-\lambda\right)^{2}+\Delta^{2}\right]^{1 / 2}}\right\}$

> Construct density
> $\rho(y)=\sum_{i=1}^{N} v_{i}^{2} \varphi_{i}^{*}(y) \varphi_{i}(y)$ and therefore ine potential

Solve BCS equation yielding v_{k}^{2} and u_{k}^{2}

Part 4: Phenomenological nucleonnucleon interaction

Properties of nucleon-nucleon interaction

Dependence on inter-nucleon distance

Properties of nucleon-nucleon interaction

Dependence on spin orientation

We begin by identifying the eigenvalue of the spin operator as

$$
\hat{S}^{2}=S(S+1) \hbar^{2}
$$

where \hat{S} is the total spin of neutron and proton i.e.

$$
\hat{S}=\hat{S}_{n}+\hat{S}_{p}
$$

NB: In this case, the lowest single-particle state has orbital angular momentum $l=0$.

Inserting the equation into the first one, we obtained
$\hat{S}^{2}=\left(\hat{S}_{n}+\hat{S}_{p}\right)^{2}=\hat{S}_{n}{ }^{2}+\hat{S}_{p}{ }^{2}+2 \hat{S}_{n} \cdot \hat{S}_{p}$

Spin, $\mathrm{S}=1$ channel (Triplet state)

Spin, $\mathrm{S}=0$ channel (Singlet state)

$$
\hat{S}_{n} \cdot \hat{S}_{p}=\frac{1}{2}\left(\hat{S}^{2}-\hat{S}_{n}^{2}-\hat{S}_{p}^{2}\right)
$$

$$
\left\langle\hat{S}_{n} \cdot \hat{S}_{p}\right\rangle=\frac{\hbar^{2}}{2}\left(S(S+1)-\frac{3}{2}\right)
$$

$$
\left\langle\hat{S}_{n} \cdot \hat{S}_{p}\right\rangle= \begin{cases}+\frac{\hbar^{2}}{4} & ; \text { Triplet state } \\ -\frac{3 \hbar^{2}}{4} & ; \text { Singlet state }\end{cases}
$$

Properties of nucleon-nucleon interaction

Dependence on tensor component

Diagram taken from H. Sagawa and G. Colo [arXiv:1401.6691v2]

Properties of nucleon-nucleon interaction

Dependence on spin-orbit coupling

The expectation value for the spin-orbit coupling is given by:

$$
\langle\hat{l} \cdot \hat{s}\rangle=\frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-s(s+1)]
$$

Recall that the total angular momentum

$$
j=\left\{\begin{array}{l}
l+1 / 2 \\
l-1 / 2
\end{array}\right.
$$

and with $s=1 / 2$, we have after substituting j into the equation

$$
\langle\hat{l} \cdot \hat{s}\rangle=\left\{\begin{array}{l}
\begin{array}{|cc|}
\frac{\hbar^{2}}{2} l & ; \text { for } j=l+1 / 2 \\
-\frac{\hbar^{2}}{2}(l+1) ; \text { for } j=l-1 / 2
\end{array}
\end{array}\right.
$$

Attractive when spin and orbital angular momentum are aligned.

Magic numbers were explained after introducing spin-orbit term

Choices of effective interaction

Choices of effective interaction: Gogny interaction

Choices of effective interaction: Skyrme interaction

The Skyrme interaction can be written as

Central term

$$
\begin{aligned}
V_{c}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= & t_{0}\left(1+x_{0} P_{\sigma}\right) \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& +\frac{1}{2}\left(t_{1}+x_{1} P_{\sigma}\right)\left[\delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \mathbf{k}^{2}+\mathbf{k}^{\dagger} \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\right] \\
& +t_{2}\left(1+x_{2} P_{\boldsymbol{\sigma}}\right) \mathbf{k}^{\dagger} \delta\left(\overrightarrow{\mathbf{r}_{1}}-\overrightarrow{\mathbf{r}_{2}}\right) \mathbf{k}
\end{aligned}
$$

Density dependent term
$V_{D D}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{6} t_{3}\left(1+x_{3} P_{\sigma}\right) \rho^{\alpha} \delta\left(\overrightarrow{\mathbf{r}}_{\mathbf{1}}-\overrightarrow{\mathbf{r}}_{2}\right)$

Spin-orbit term

$$
\begin{gathered}
V_{\text {s.o }}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=i W_{0}\left(\sigma^{(1)}+\sigma^{(2)}\right) \cdot \mathbf{k}^{\dagger} \times \delta\left(\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}, \mathbf{k}\right. \\
\text { Momentum operator } \\
\mathbf{k}=\frac{1}{2 i}\left(\vec{\nabla}_{1}-\vec{\nabla}_{2}\right)
\end{gathered}
$$

The Skyrme parameters are t_{i}, x_{i} and W_{0} with $i=[1,2,3]$ are obtained from fit to some nuclear properties.

Part 5:
Skyrme's energy density functional

Skryme energy-density functional

The expectation value of the many-body Hamiltonian operator for a wave function written as a normalized Slater determinant is

$$
E=\left\langle\Psi_{H F}\right| \hat{H}\left|\Psi_{H F}\right\rangle=\int \mathscr{H}(\mathbf{r}) d \mathbf{r}=\int\left(\mathscr{H}_{\text {kin }}(\mathbf{r})+\mathscr{H}_{c}(\mathbf{r})+\mathscr{H}_{D D}(\mathbf{r})+\mathscr{H}_{\text {s.o }}(\mathbf{r})+\mathscr{H}_{\text {Coul }}(\mathbf{r})\right) d \mathbf{r}
$$

They are written as Hamiltonian densities with contributions from
Kinetic energy
$\mathscr{H}_{\text {kin }}(\mathbf{r})=\left(1-\frac{1}{A}\right) \frac{\hbar^{2}}{2 m} \tau$
Central

$$
\mathscr{H}_{c}(\mathbf{r})=B_{1} \rho^{2}+B_{10} \mathbf{s}^{2}+B_{3}\left(\rho \tau-\mathbf{j}^{2}\right)+B_{14}\left(\overleftrightarrow{J}^{2}-\mathbf{s} \cdot \mathbf{T}\right)+B_{5} \rho \Delta \rho+B_{18} \mathbf{s} \cdot \triangle \mathbf{s}
$$

$$
+\sum_{q}\left\{B_{2} \rho_{q}^{2}+B_{11} \mathbf{s}_{q}^{2}+B_{4}\left(\rho_{q} \tau_{q}-\mathbf{j}_{q}^{2}\right)+B_{15}\left(\overleftrightarrow{J}_{q}^{2}-\mathbf{s}_{q} \cdot \mathbf{T}_{q}\right)\right\}+B_{6} \rho_{q} \triangle \rho_{q}+B_{19} \mathbf{s}_{q} \cdot \triangle \mathbf{s}_{q}
$$

Density dependent
$\mathscr{H}_{D D}(\mathbf{r})=\rho^{\alpha}\left[B_{7} \rho^{2}+B_{12} \mathbf{s}^{2}+\sum_{q}\left(B_{8} \rho_{q}^{2}+B_{13} \mathbf{s}_{q}^{2}\right)\right]$

Spin-orbit
$\mathscr{H}_{s . o}(\mathbf{r})=B_{9}\left[\rho \nabla \cdot \mathbf{J}+\mathbf{j} \cdot \nabla \times \mathbf{s}+\sum_{q}\left(\rho_{q} \nabla \cdot \mathbf{J}_{q}+\mathbf{j}_{q} \cdot \nabla \times \mathbf{s}_{q}\right)\right]$
Coulomb
$\mathscr{H}_{\text {Coul }}(\mathbf{r}) \approx \frac{1}{2} \rho_{p}(\mathbf{r}) V_{C D}(\mathbf{r})-\frac{3}{4} e^{2}\left(\frac{3}{\pi}\right)^{\frac{1}{3}} \rho_{p}^{\frac{4}{3}}(\mathbf{r})$

Skryme energy-density functional - coupling constants

The coupling constants B_{j} with $j=[1,19]$ are written in terms of the Skyrme parameters t_{i}, x_{i} and W_{0}.

$$
\begin{array}{ll}
B_{1}=\frac{t_{0}}{2}\left(1+\frac{x_{0}}{2}\right) & B_{2}=-\frac{t_{0}}{2}\left(\frac{1}{2}+x_{0}\right) \\
B_{3}=\frac{1}{4}\left[t_{1}\left(1+\frac{x_{1}}{2}\right)+t_{2}\left(1+\frac{x_{2}}{2}\right)\right] & B_{4}=-\frac{1}{4}\left[t_{1}\left(\frac{1}{2}+x_{1}\right)-t_{2}\left(\frac{1}{2}+x_{2}\right)\right] \\
B_{5}=-\frac{1}{16}\left[3 t_{1}\left(1+\frac{x_{1}}{2}\right)-t_{2}\left(1+\frac{x_{2}}{2}\right)\right] & B_{6}=\frac{1}{16}\left[3 t_{1}\left(\frac{1}{2}+x_{1}\right)+t_{2}\left(\frac{1}{2}+x_{2}\right)\right] \\
B_{7}=\frac{t_{3}}{12}\left(1+\frac{x_{3}}{2}\right) & B_{8}=-\frac{t_{3}}{12}\left(\frac{1}{2}+x_{3}\right) \\
B_{9}=-\frac{W_{0}}{2} & B_{10}=\frac{1}{4} t_{0} x_{0} \\
B_{11}=-\frac{1}{4} t_{0} & B_{12}=\frac{1}{24} t_{3} x_{3} \\
B_{13}=-\frac{t_{3}}{24} & B_{14}=-\frac{1}{8}\left(t_{1} x_{1}+t_{2} x_{2}\right) \\
B_{15}=\frac{1}{8}\left(t_{1}-t_{2}\right) & B_{18}=-\frac{1}{32}\left(3 t_{1} x_{1}-t_{2} x_{2}\right) \\
B_{19}=\frac{1}{32}\left(3 t_{1}+t_{2}\right) &
\end{array}
$$

Skryme energy-density functional - local densities

Skryme energy-density functional - local densities

Time-odd local densities
> Do not contribute for ground-state of even-even nucleus

Central

Spin kinetic density
$\mathbf{T}_{\mu}(\mathbf{r})=\sum_{k} v_{k}^{2}\left(\nabla\left[\phi_{k}\right]^{\dagger}(\mathbf{r})\right) \cdot \sigma_{\mu} \nabla\left[\phi_{k}\right](\mathbf{r})$

$$
\begin{aligned}
\mathscr{H}_{c}(\mathbf{r})= & B_{1} \rho^{2}+B_{10} \mathbf{s}^{2}+B_{3}\left(\rho \tau-\mathbf{j}^{2}\right)+B_{14}\left(\overleftrightarrow{J}^{2}-\mathbf{s}, \mathbf{T}\right)+B_{5} \rho \triangle \rho+B_{18} \mathbf{s} \cdot \triangle \mathbf{s} \\
& +\sum_{q}\left\{B_{2} \rho_{q}^{2}+B_{11} \mathbf{s}_{q}^{2}+B_{4}\left(\rho_{q} \tau_{q}-\mathbf{j}_{q}^{2}\right)+B_{15}\left(\overleftrightarrow{J}_{q}^{2}-\mathbf{s}_{q} \cdot \mathbf{T}_{q}\right)\right\}+B_{6} \rho_{q} \triangle \rho_{q}+B_{19} \mathbf{s}_{q} \cdot \Delta \mathbf{s}_{q}
\end{aligned}
$$

Application of variational principle to obtain HF equations

The Hartree-Fock equations to be solved iteratively are obtained by varying the total energy with respect to ϕ_{i}

$$
\frac{\delta}{\delta \phi_{j}(\mathbf{r})}\left(E\left[\phi_{k}\right]-\sum_{k, \tau, \sigma} e_{k} \int d \mathbf{r}\left|\phi_{k}(\mathbf{r})\right|^{2}\right)=0
$$

The HF equations in coordinate space given below are written in terms of local densities and Skyrme's coupling constants.

$$
\begin{aligned}
& \langle\mathbf{r}| \hat{h}_{H F}^{(q)}\left|\phi_{k}\right\rangle=-\nabla \cdot\left(\frac{\hbar^{2}}{2 m_{q}^{*}(\mathbf{r})} \nabla\left[\phi_{k}\right](\mathbf{r})\right)+\left(U_{q}(\mathbf{r})+\delta_{q p} U_{C o u l}(\mathbf{r})\right)\left[\phi_{k}\right](\mathbf{r}) \\
& +i \mathbf{W}_{q}(\mathbf{r}) \cdot\left(\sigma \times \nabla\left[\phi_{k}\right](\mathbf{r})\right)-i \sum_{\mu, v}\left\{\left(W_{q, \mu v}^{(J)}(\mathbf{r}) \sigma_{v} \nabla_{\mu}\left[\phi_{k}\right](\mathbf{r})\right)\right.
\end{aligned}
$$

Breaking of time-reversal symmetry at the mean-field level

Part 6:
Expansion of s.p. wave functions

Expanding on deformed harmonic oscillator basis states

HF equation to be solved:

$$
\hat{h}_{H F}|k\rangle=e_{k}|k\rangle
$$

$\hat{h}_{H F} \phi_{k}(\boldsymbol{r}, \sigma, q)=e_{k} \phi_{k}(\boldsymbol{r}, \sigma, q)$

The wave function can be expanded on any orthonormal basis states for e.g.

$$
\phi_{k}(\mathbf{r}, \sigma, q)=\chi_{q} \sum_{\alpha} C_{\alpha}^{(k)} \varphi_{\alpha}(\mathbf{r}, \sigma)
$$

Cartesian coordinate

$$
\begin{aligned}
& \text { Deformed harmonic oscillator } \\
& \quad \alpha \equiv\left\{n_{r}, n_{z}, l_{z}, s_{z}\right\} \\
& r=\{r, z, \varphi\} \text { (cylindrical coord.) }
\end{aligned}
$$

Recap:

1-dimensional SE with harmonic oscillator potential

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)
$$

Eigenvalue:

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Hermite polynomial

Eigenfunction:
$\psi_{n}(x)=\frac{1}{\sqrt{\sqrt{\pi} 2^{n} n!x_{0}}} e^{-x^{2} / 2 x_{0}^{2}} H_{n}\left(\frac{x}{x_{0}}\right)$

Recap:

Radial equation of hydrogen atom
$-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} U(r)}{d r^{2}}+\left[\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}-\frac{e^{2}}{r}\right] U(r)=E U(r)$
Eigenvalue:

$$
E_{n}=-\frac{\mu e^{4}}{2 \hbar^{2}} \frac{1}{n^{2}}=-\frac{e^{2}}{2 a_{0}} \frac{1}{n^{2}}
$$

Associated Laguerre polynomial

$$
\begin{aligned}
& \text { Eigenfunction: } \\
& R_{n l}(r)=N_{n l}\left(\frac{2 r}{n a_{0}}\right)^{l} e^{-r / n a_{0}} L_{n+l}^{2 l+1}\left(\frac{2 r}{n a_{0}}\right)
\end{aligned}
$$

Expanding on deformed harmonic oscillator basis states

When expanding the s.p. wave function on
deformed harmonic oscillator, it is written as

$$
\phi_{k}(\mathbf{r}, \sigma, q)=\chi_{q} \sum_{\alpha} C_{\alpha}^{(k)} \varphi_{\alpha}(\mathbf{r}, \sigma)
$$

Two parameters to be optimized namely

$$
\beta_{0}=\sqrt{\frac{m \omega_{0}}{\hbar}} \quad q \equiv \frac{\omega_{\perp}}{\omega_{z}}
$$

with $\omega_{0}^{3}=\omega_{\perp}^{2} \omega_{z}$ for a given basis size N_{0}.

Part 7: Examples of $\mathrm{HF}+\mathrm{BCS}$ calculations

Global microscopic calculations of ground-state spins and parities for odd-mass nuclei L. Bonneau, P. Quentin and P. Moller, Phys. Rev. C 76, 024320 (2007)

Calculated GS spin-parity compared to experiment

Calculated GS spin-parity compared to experiment
"...the overall agreement is similar for the SIII and SLy4 Skyrme forces and about 5\% less good for the SkM* force."

Large-scale self-consistent nuclear mass calculations
M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz and P. Borycki, Int. J. Mass Spectrom. 251 (2006)

Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach
M.-H. Koh, D.D. Duc, T.V. Nhan Hao, H.T. Long, P. Quentin and L. Bonneau, Eur. Phys. J A 52 (2016)

Part 8:
Constrained Hartree-Fock

Constraining to a desired nuclear shape

Unconstrained HF calculation yields solution at the local extrema (minima). A constraint is added to study nuclear properties at a certain deformation.

$$
\hat{H}^{\prime}=H+f\left(\mu_{l},\left\langle\hat{Q}_{l m}\right)\right.
$$

Axial \& parity symmetric shapes

Quadrupole moment $\quad Q_{20}=\left\langle\hat{Q}_{20}\right\rangle=\int d \mathbf{r} \rho(\mathbf{r})\left(2 z^{2}-r^{2}\right)$
Hexadecapole moment $\quad Q_{40}=\left\langle\hat{Q}_{40}\right\rangle=\int d \mathbf{r} \rho(\mathbf{r}) r^{4} Y_{4}^{0}(\theta, \varphi)$

Parity asymmetric shapes
Octupole moment

$$
Q_{30}=\left\langle\hat{Q}_{30}\right\rangle=\int d \mathbf{r} \rho(\mathbf{r}) r^{3} Y_{3}^{0}(\theta, \varphi)
$$

Axially asymmetric shapes

Non-axial quadrupole moment

$$
Q_{22}=\left\langle\hat{Q}_{22}\right\rangle=\int d \mathbf{r} \rho(\mathbf{r})\left(x^{2}-y^{2}\right)
$$

Ways to constraint nuclear deformation

Search for a point in which the slope is equal to μ.

Quadratic constraint
$f\left(\mu_{l},\left\langle\hat{Q}_{l m}\right\rangle\right)=\frac{1}{2} C_{l}\left(\left\langle\hat{Q}_{l m}\right\rangle-\mu_{l}\right)^{2}$

Calculations with no constraint

$$
f\left(\mu_{l},\left\langle\hat{Q}_{l m}\right\rangle\right)=0
$$

yields solution at the local extrema.

From H. Flocard, P. Quentin, A.K. Kerman and D.
Vautherin, Nucl. Phys. A 203, 433 (1973)

Part 9:
Application of HF+BCS to large nuclear deformation

Overview of nuclear theory studies

Calculations of deformation energies

Deformation energy of odd-mass ${ }^{239} \mathrm{Pu}$
M.-H. Koh, L. Bonneau, P. Quentin, T.V. Nhan Hao
and H. Wagiran, Phys. Rev. C 95, 014315 (2017)

N. Schunck, D. Duke, H. Carr, and A. Knoll, Phys. Rev. C 90, 054305 (2014)

Fission cross-section modelling

