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1 Introduction – measurement of quantal system

Let’s begin by considering the act of measurement on a macroscopic (i.e. things that we

can see e.g. car, table etc.) and microscopic (e.g. atoms, nucleus) objects. In order to

make measurements of some physical quantities, one needs to send some kind of probes

to the system. For example to measure the position of a macroscopic object such as a

car, one needs to see where the object is. What is the probe here? It is the light that

enables us see and thus complete the act of measurement.

Similarly, if one makes a measurement on a microscopic system one needs a probe.

The difference is that the light that we use to see daily objects are visible light with

wavelength of 400 - 700 nm. However, the wavelength needed to investigate microscopic

objects must be shorter than those of the visible light. From the equation

E =
hc

λ
(1)

we see that the energy for visible light is smaller than those needed to study microscopic

objects.

This means that while making a measurement on microscopic object, we are bom-

barding the object with lots of energy. The consequence – we are disturbing the peace

that the object once had! Say that before the measurement, the object is at a position

x1, then right after the measurement it will be shifted to a new position x1.

Figure 1 Nice cartoon on the non-commutativity of position and momentum operators.
Credit goes to the original cartoonist.
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2 Eigenvalue equation

There are cases where the act of measurement does not change the state1 of the quantal

system. This means that the state of the system before and after the measurement is the

same. In mathematical form, this is represented as

Âψ = aψ (2)

where Â is an operator2 which represents a physical quantity to be measured, a is the value

that one will get from the measurement process and Ψ is the wave function representing

the state of the system. The equation (2) is known as the eigenvalue equation. It is

important that the wave function remains the same on both sides of the equation.

3 Representating wave functions and operators in

matrix form

The wave function Ψ is a vector and is represented by a column matrix. In the case of a

3D vector (ignoring other degrees of freedom), we have

ψ =

ψxψy
ψz

 (3)

where ψx, ψy and ψz are essentially coefficients of the vector. For comparison we take a

3D vector for e.g. ~r = 2̂i+ 3ĵ + 4k̂ where in matrix form, the vector ~r is written as

~r =

2

3

4

 . (4)

Here we see that ψx is the value 2 in the vector ~r (the same for the others).

Operators, on the other hand, is represented by a square matrix

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (5)

1Now we used a term that we see in quantum mechanics. Here the state of the system is repre-
sented by a wavefunction that contains all information about the system e.g. position, momentum,
energy etc..

2The hat above the letter A signifies that this is an operator.
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where Aij is the elements of the matrix A with i and j indices referring to the row and

column of the matrix, respectively.

In equation (2) we say that a is the eigenvalue of Â. However, a might not necessary

be a single value. It can have a spectrum of values. Assume that we are dealing with

discrete values, we have for example a = 1, 3, 5 with certain probabilities of getting each

of these values. Now we make lots of measurements and then to get an average value of

these values, we calculate what is called the mean value of Â by

(
ψ∗x ψ∗y ψ∗z

)A11 A12 A13

A21 A22 A23

A31 A32 A33


ψxψy
ψz

 . (6)

4 Hermitian matrix – Hermitian operator

We have learnt about special matrices and one of them is Hermitian matrix which is

defined as

A† = A∗T = A. (7)

Hermitian matrix is of huge importance in quantum mechanics. Recall that any physical

(observable) quantities to be measured are represented by operators. The square matrix

representing these operators must be Hermitian. That is to say a non-Hermitian matrix

cannot represent an observable quantity.

5 Commutator of two matrices – Simultaneous mea-

surements of two observables

In matrix we have also learnt of commutator between two matrices say A and B i.e.

[A,B] = AB −BA. (8)

If [A,B] = 0 then the two matrices are said to commute with one another.

This is important in quantum mechanics because it tells us whether we can mea-

sure two (or more) quantities at the same time. One of the three sets of Heisenberg’s

uncertainty principle given as

∆x ∆p ≥ ~
2

(9)
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comes about from the equation3

∆A ∆B ≥ 1

2
|〈[A,B]〉|. (10)

The symbol ∆A represents the uncertainty in the measurement of a physical quantity

represented by A. From the relation, we see that the uncertainty in measuring two phys-

ical quantities boils down to the commutation between the two matrices (or operators)

representing those two quantities.

In the case there A is the position operator and B is the momentum operator, we

have

[X̂, P̂x] = i~ (11)

i.e. the two matrices does not commute. Taking the absolute value of the commutator,

one then obtains equation (9).

In Section 1 we speak about how measurements changes the state of the system. Here

we can relate it to equation (9). If we send a light (with short wave length i.e. high in

energy) to observe the position of a particle, then the high amount of energy supplied

to the particle will alter the momentum of the particle. So now that we know the exact

position of the particle4, we loose track of its momentum.

Therefore, knowing whether two or more matrices commute or not allows us to de-

termine the possibility for simultaneous measurements of physical quantities.

6 Eigenvalues of a matrix – Eigenvalue of an operator

In linear algebra class, we have learnt how to find eigenvalues of a square matrix. This is

very relevant in quantum mechanics since an operator is always represented by a square

matrix. Therefore, eigenvalues of the square matrix are in fact the eigenvalues of the

operator. This means that when one performs repetitive measurements for the quantity

represented by this operator, one will always obtain one of these eigenvalues.

The probability to get one eigenvalue over the other is of course not the same. But

we will wait until a few sections later before coming back to this issue of finding the

probability of finding an eigenvalue. For completeness, let us mention here that the

eigenvalues of a matrix e.g. A above are obtained by equating the determinant∣∣∣∣∣∣∣
A11 − λ A12 A13

A21 A22 − λ A23

A31 A32 A33 − λ

∣∣∣∣∣∣∣ = 0. (12)

3For those interested to find out how we get this equation, do check out on Uncertainty relation
between two operators in Quantum Mechanics by Nouredine Zettili or any other related textbook.

4This is the position before the particle flies off due to the extra energy supplied to it.
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7 Diagonalization of matrix & searching for eigen-

vectors

Recall that for each eigenvalue we can find an eigenvector by inserting the eigenvalue intoA11 − λ A12 A13

A21 A22 − λ A23

A31 A32 A33 − λ


ψxψy
ψz

 =

0

0

0

 . (13)

Here

ψxψy
ψz

 is the eigenvector in which coefficients ψx, ψy and ψz are to be determined5.

Assuming we have a 3× 3 matrix, we will then have 3 eigenvectors that can be combined

into a new matrix denoted as C where

C =

ψ
(1)
x ψ

(2)
x ψ

(3)
x

ψ
(1)
y ψ

(2)
y ψ

(3)
y

ψ
(1)
z ψ

(2)
z ψ

(3)
z

 . (14)

The matrix C is used to diagonalize the square matrix A representing the operator Â

C−1 A C = D (15)

where C−1 is the inverse of matrix C and D is a diagonal matrix where the values along

the diagonal are the 3 eigenvalues that we have found earlier.

Supposed that the eigenvalues of the matrix A is degenerate6 then you will see that

the eigenvectors of the degenerate eigenvalue are not orthogonal. We can employ the

Gram-Schmidt method7 in order to find orthogonal eigenvectors. At the end of this

procedure, we will have 3 orthogonal eigenvectors that will diagonalize the square matrix

A.

5Relate this to eq. (3).
6There are more than one eigenvector sharing the same eigenvalue.
7Find a short note for simple 2 degenerate case here.
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8 State of the system, eigenvectors and probability

of measurements

In this last section, I want to gel up all the things that we have discussed here. Especially

on how to relate a general wave function for a system with eigenvectors and probability

in measurements.

We first discussed about the state of the system and that it is described by a wave-

function. But the state of the system does not have to exist in its eigenstate only, but

rather in a superposition of states. Let us consider only three eigenstates so that the

state of the system is

Ψ = a1ψ1 + a2ψ2 + a3ψ3 (16)

where ψi =

ψ
(i)
x

ψ
(i)
y

ψ
(i)
z

 (compare this to eq. (3) and (14)). In order for the wave function

Ψ to be normalized, we must have the inner product of Ψ with itself to be equal to 1 so

that

a2
1 + a2

2 + a2
3 = 1. (17)

The probability of obtaining an eigenvalue λi during measurement is then the square

of the probability amplitude ai i.e.

P(λi) = |ai|2 (18)

You will see from equation (17) that the sum of the probability is exactly 1.

One last note is that the probability amplitude ai can be obtained by projecting Ψ

onto ψi. Take for example i = 1, the probability amplitude a1 can be obtained in matrix

form by

a1 =
(
ψ

(1)
x ψ

(1)
y ψ

(1)
x

)
︸ ︷︷ ︸

ψ†
1

·

[
a1

ψ
(1)
x

ψ
(1)
y

ψ
(1)
z

+ a2

ψ
(2)
x

ψ
(2)
y

ψ
(2)
z

+ a3

ψ
(3)
x

ψ
(3)
y

ψ
(3)
z

]
︸ ︷︷ ︸

Ψ

(19)

Since the eigenvectors are orthogonal, the dot product between ψ1 with ψ2 and ψ3 is

exactly 0. The only surviving term is the dot product of ψ1 with itself ψ1.
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