Complex numbers - Euler's formula

Koh Meng Hock

May 3, 2020

This short write-up is to explain about how one gets the Euler's formula written as

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{1}
\end{equation*}
$$

Lets begin by consider the exponential of x i.e. e^{x}. We know that this can be written as:

$$
\begin{equation*}
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots \tag{2}
\end{equation*}
$$

Now if we substitute $x=i \theta$, we obtain

$$
\begin{equation*}
e^{i \theta}=1+\frac{i \theta}{1!}+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\cdots \tag{3}
\end{equation*}
$$

Recall that $i^{2}=-1$ so that the expression in (3) can be written as:

$$
\begin{equation*}
e^{i \theta}=1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!}-\frac{\theta^{6}}{6!} \cdots \tag{4}
\end{equation*}
$$

Rearranging the equation to

$$
\begin{equation*}
e^{i \theta}=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!} \cdots\right)+\left(i \theta-\frac{i \theta^{3}}{3!}+\frac{i \theta^{5}}{5!} \cdots\right) \tag{5}
\end{equation*}
$$

and identifying that the terms in the first and second parentheses on the right-hand side are the expressions for $\cos \theta$ and $\sin \theta$, respectively, i.e.

$$
\begin{gather*}
\cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!} \cdots \tag{6}\\
\sin \theta=\left(i \theta-\frac{i \theta^{3}}{3!}+\frac{i \theta^{5}}{5!} \cdots\right. \tag{7}
\end{gather*}
$$

we then have the Euler's formula in (1). This justify writing complex number in the form of

$$
\begin{equation*}
x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta} . \tag{8}
\end{equation*}
$$

Good to know!

The Euler's formula makes the multiplication and division of complex numbers easier to handle. Say we want to multiply two complex numbers $z_{1}=3 e^{3 i}$ and $z_{2}=2 e^{2 i}$.
Using the Euler's formula, we can evaluate $z_{1} \cdot z_{2}$ as:

$$
\begin{equation*}
z_{1} \cdot z_{2}=3 e^{3 i} \cdot 2 e^{2 i}=6 e^{(3+2) i}=6 e^{5 i} \tag{9}
\end{equation*}
$$

Dividing complex numbers e.g. z_{1} / z_{2} is also equally easy:

$$
\begin{equation*}
z_{1} / z_{2}=\frac{3 e^{3 i}}{2 e^{2 i}}=\frac{3}{2} e^{(3-2) i}=\frac{3}{2} e^{i} \tag{10}
\end{equation*}
$$

